
Cvi)

DT I

J AN 2 3 g

(. IMODIFYING AFOTEC'S SOFTWARE

MAINTAINABILITY EVALUATION GUIDELINES

THESIS

Stephen K. Johnson, B.S.
Captain, USAF

AFIT/GCS/ENG/88D- 10

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

-T- T'3!-- 0N _STATE!,)=_A

j Approv'!sd for Public rflwx
L't1bution Ua~ailt~d 14142



AFIT/GCS/ENG/88D- 10

S

0

0

MODIFYING AFOTEC'S SOFTWARE

MAINTAINABILITY EVALUATION GUIDELINES

-- THESIS

Stephen K. Johnson, B.S.
Captain, USAF

*O AFIT/GCS/ENG/88D- 10

DTIC
* •ELECTE

JAN 2 3198q

Approved for public release; distribution unil'nited

--



AFIT/GCS/ENG/i88D- 10

MODIFYING AFOTEC'S SOFTWARE MAINTAINABILITY EVALUATION GUIDELINES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

* Stephen K. Johnson, B.S.

Captain, USAF

December 1988

Approved for public release; distribution unlimited



Pre4'ace

The purpose of this study was to develop a complexity metric or set of

metrics that would be useful in measuring software maintainability. A set of

interesting metrics was assembled from current literature, and a series of
S

cr teria was developed to measure how well each metric measures

maintainability. Applying the criteria to the metrics, a pair of metrics that will

best measure maintainability was determined.

Once the maintainability metrics were decided, rules for their

implementation were given, A method to determine a threshold value was

explained so that valid ranges of values could be recommended. A metric

validation process was proposed to gather data that will reveal if the metrics

actually reflect maintainability.

I would like to thank several people who have given me support and

guidance throughout this thesis effort. I am very gratefal to my advisor, Major

,James Howatt for his guidance In helping me narrow down my goals when I

began research, his assistance throughout the development of this thesis, and

his patience when I missed deadlines. I also wish to thank Captain Wade Shaw

for explaining how Important the metric threshold and validation analysis

process is. A debt oi gratitude is owed Captain David Umphress, whose editorial0
comments greatly enhanced the readability of this thesis. I would also like to

thank my sponsor, Captain Mike McPherson, and Mr. Jim Baca of the Air Force

Operational Test and Evaluation Center for their support and direction. Finally, r

I would like to thank all of my fellow students in the Computer Engineering

section, who made the "AFIT Experience" unforgettable.

Stephen K Johnson

01
S Av, 2 i.•!1 t V ('od -,S

j ,1 ,V



Table of Contents
S

Page

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . .

Abstract ..................... ............................. vi

I. Introduction ........... ........................... 1

Background . . . . . . . . . . . . . . . . . . . .
* Summary of the AFOTEC Software Maintainability

Guidelines .................... ...................... 3
Problem ...................... ....................... 5
Assumptions ................... ...................... 5
Scope ...................... ........................ 5
Sequence of Presentation .............. ............... 6

II. Literature Review .......... ........................ 7

Introduction ................... ..................... 7
Size Metrics .............. ... ..................... 7

Lines of Code ............................... 8
Halstead's Software Science (N) ........... 9

Structure Metrics ......... ................... .i.11
Data Structure Metrics .... .............. ... 12

Span .................. .................... 12
Information Flow .... .............. .. 12

Control Structure Metrics ... ............ .. 16
McCabe's Cyclomatic Complexity ....... .. 16
Knot Count ........ ................. ... 20
MEBOW (MEasure Based on Weights) .... ...... 22

Composite (Hybrid) Metrics .... .............. .. 23
Halstead's Software Science (E) .. ......... .. 25
Hansen's Pair (Cyclomatic Number, Operator Count) 26
Oviedo's model of program complexity ..... ....... 26

Summary ............. ........................ ... 28

III. Metric Selection Criteria ........ ................. ... 30

Introduction .......... ..................... ... 30
Criteria for the Selection of a Maintainability Metric 30

Clear and Unambiguous .............. . . 31
Intuitive .................. .................... 32
Language Independent .... ............... ... 32
Prescriptive ......... ................... ... 33
Robustness ........... .................... ... 33
Accurately Reflect Control Flow ......... ... 34

Ranking Basic Control Structures ...... .. 34
Nesting and Compound Conditions ....... .. 35

iii



Accurately Reflect Data Flow ... ........... ... 35
Indicates Data Amount ... ............ ... 35

* Shows Data Use ...... ............... ... 36
Reflects Inter-Module Data Links .......... 36

Comparison of Metrics by Selection Criteria ...... 36
Summary ............. ........................ ... 39

IV. Maintainability Metrics Proposed for AFOTEC Use ...... .. 41
S

Introduction .................. ..................... 41
Proposed Maintainability Metrics .. ........... ... 42
Justification of Metrics Selected ... ........... ... 43

Hybrid Metric Benefits and Detriments ...... .. 43
MEBOW ............ ...................... ... 48

* Evidence Supporting the Use of v(G) ..... 50
Evidence Supporting the Use of KNOT 54

Information Flow ....... ................. ... 57
Metric Implementation Considerations ......... ... 61

Calculation of Metric Value .. ........... ... 61
Threshold Value ........ ................. ... 67

* Validation of Metrics ....... ................. ... 68
Summary ............. ........................ ... 73

V. Conclusions and Recommendations .... .............. ... 74

Introduction .................. ..................... 74
* Conclusions ................... ..................... 74

How the Problem was Solved ... ............ ... 75
The Limitations and Benefits of Metrics ..... 76

Recommendations ........... .................... ... 78
Summary ............. ........................ ... 80

* Appendix A: Justification for Metric Complexity Criteria Ratings 81

Appendix B: Algorithms for Metric Value Computation ..... ....... 89

Appendix C: Empirical Support for Hybrid Metrics ...... ........ 95

* Appendix D: Calculation of Metric Value for an Ada Procedure . 99

Bibliography ................. ........................... .... 109

VITA ..................... ............................... .... 112

iv



0

List of F~u r e s

Figure Page

1. Differing Statement Counts for the Same Function ...... 8

2. Haistead's N Example ...... .................... .l. .. 11
S

3. Span Example .......... ........................ .... 13

4. Information Flow Example ..... .................. .... 15

5. Example Program ........... ...................... ... 18
0

6. Example Directed Graph Representation of Figure 5 19

7. Knot Example ...................... ..................... 22

8. Program Complexity Example ..... ................. .... 28

9. Metrics vs. Metric Selection Criteria .. ........... .. 38

10. More Structured Knot Example .... ................ .... 56

11. A Comparison of Three Metrics .... ............... ... 57

12. Example MEBOE Calculation ..... ................. ... 63

13. Example Validation Method Milestones ... ............ ... 72

14. Identification of Extreme Outlier Error Components 96

15. Results of Harrison and Cook's Study .. .. .....................96

16. MEBOW Basic Control Constructs .......... ............... 100

V

0m



AFIT/GCS/ENG/88D- l0

Abstract

The purpose of this stu-d was to survey automatable software0
maintainability metrics for Inclusion in the Air Force Operational Test and

Evaluation Center's (AFOTEC's) software maintainability evaluations. This

research was looking fcr metrics that' would measure maintainability, could be

automated, and would fit into existing guidelines. First, a set of software

complexity metrics was investigated. Then, a set of criteria to determine if a

complexity metric measures maintainability was developed. After comparing theS
metrics to the criteria, a subset of two metrics that met the criteria better than

any other metrics was derived.

The software complexity metrics evaluated were placed into three

categories: size metrics, structure metrics, and hybrid metrics. The structure

metrics include both data structure and control structure metrics. The hybrid

metrics include metrics blended from two of the other groups, such as a

combination of size and structure metrics.

The metric selection criteria included three categories: general

applicability criteria, control flow complexity criteria, and data flow complexity

criteria. An assumption was made that the metric or combination of metrics

that met the most of these criteria would best reflect software maintainability. )

A combination of a data structure metric, Information flow, and a control

structure metric, MEasurement Based on Weights (MEBOW), was determined to

meet more criteria than any other metric or combination of metrics. This hybrid

metric was suggested for AFOTEC use.

vi



Further information explaining theoretical and elapirical justification for

* the use of these metrics was given. A description of techniques to determine

metric threshold values was discusse, along with a procedure for metric

validation. Finally, a theme of the limitations Inherent in measuring

S* maintainability with automated metrics was elaborated.

0

0o

0

vii



MODIFYING AFOTEC'S SOFTWARE MAINTAINABILITY EVALUATION GUIDELINES

I. Introduction

Software metrics are tools to measure the intrinsic complexity of software

systems in order to gauge the software design's "quality and effectiveness"

(Prather, 1984:340). The quality of software should be measured to determine if

it is both testable and maintainable (McCabe, 1983:3). These issues are

important because testing requires a large amount of software development time,

and software maintenance requires between 50 and 7. percent (Henry and

Kafura, 1981:510) of the software life-cycle costs.

The Air Force Operational Test and Evaluation Center (AFOTEC) is

responsible for testing software being developed for the Air Force. It uses

software metrics to determine if software is maintainable. This thesis describes

additional metrics that AFOTEC should use to measure maintainability. The use

of these additional metrics will complement the current software evaluation

guidelines.

Background

AFOTEC evaluates source -ode and documentation for the presence of

* seven maintainability characteristics. These characteristics are modularity,

descriptiveness, consistency, simplicity, expandability, testability, and

traceability. Each will be described later. Standardized questionnaires are

* filled out by software engineers whoi are "knowledgeable in software procedures,

techniques, and maintenance, bu;t need not. have a detailed knowledge of the

functional area of the program" (Peercy, 1981:343). The evaluaturs answer the

* questions within the questlornnalre wilh respect to the software. Responses are

analyzed and averaged to yield a maintainability rating.

-•. |1



Appraising software by this technique provides several advantages. This

evaluation method can be used on any type of softwar-, regardless of the

implementation language. Weaknesses and strengths can be highlighted at any

level, between subsystems within the .;oftware, or in comparison among systems.

As both source code and documentation are considered, any discrepancies

between bow the specification says the software is constructed and how it is

actually implemented can be discovered. AFOTEC's analysis of historical data

suggests that their evaluation results correlate well with how difficult the

software was to maintain. This implies that the current process does measure

software maintainability.
0

This evaluation method has the disadvantage of being labor intensive. It

requires that evaluators perform time-consuming activities such as counting the

numbers of operands and operators in the source code. This means that it is
0

expensive to assess software using this method. Because this evaluation is

done manually, typically only about ten percent of the source code in large

programs is examined. If this process were automated, all of the code could be

measured, and the procedures that are shown to be more complex could later be

evaluated in more detail using AFOTEC's current guidelines. The methodology

used does not cunsider the overall software design, which is another drawback.
0

Instead of Judging design issues such as the connections between modules and

how well the software has been modularized, the evaluation method looks at

each module as a separate entity, If metrics that measure design complexity
0

are used, the complexity of thee Inter-module data passing and the program

call i•g structure can be considered. To eiliniiiate these problems, additional

software metrics should be used by AFOTEC' to grade software, and they should

be autoltoated to reduce thie evaloal ors" woril(oad.



Summary of the AFOTEC Software Maintainability Guidelines

SThe following definitions describe what AFOTEC's guidelines are trying to

measure. Then the criteria that used to measure maintainability are detailed.

ANSI/IEEE Standard 729 (Schneidewind, 1987:303) state3:

* Maintenance: Modification of a software product after
delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environment.

Maintainability: The ease with which a software system can
be corrected when errors or deficiencies occur, and can be expanded

* or contracted to satisfy new requirements.

The AFOTEC pamphlet 800-2, Vol. 3 (referred to as the Vol. 3 from now

on), "Software Maintainability - Evaluation Guide", standardized questionnaire

* •assesses maintainability with respect to software source code and documentation.

Quoting from the Vol. 3 itself, "These questionnaires [the Vol. 31 are designed to

determine the presence or absence of certain desirable attributes in a given

O software product" (AFOTEC, 1988:1). These desirable attributes are the seven

characteristics:

Modularity " Software possesses the characteristic of modularity to the

- extent a logical partitioning of software Into parts, components, and/or modules

has occurred" (AFOTE.C, P)88:5). The documentation is evaluated to determine If

it is partitioned lnto separate parts or volumes that each lhas a distinct

- purpose Similarly, source code Is evaluated to determine the level of use of

structured programming techniques.

Descriptiveness "Software possesses the characteristic of descriptiveness

-- to the extent that It contains Information regarding its objectives, assumptions,

inputs, processing, outputs, components, revision status, etc" (AFOTEC, 1988:5).

This characteristic Is used to mecasure how well described the software's design

-* anid iop erationr Is. Self-descriptive so urrce lanEu age constructs and accomuppanlying

colniorts cari facilitale efforts to uiderstand program operation

30-



Consistency : "Software possesses the characteristic of consistency to the

extent the software products correln.te and contain uniform notation, terminology,

and symbology" (AFOTEC, 1988:5). This characteristic is used tG measure how

well the software designers followed standards in creating documentation and

how well coding conventions were followed. The use of a naming convention for

global data and a standard indentation convention fall under this characteristic.

Simplicity : "Software possesses the characteristic of simplicity to the

extent that it reflects the use of singular concepts and fundamental structures

in organization, langrgage, and implement.tion techniques" (AFOTEC, 1988:6).

Simplicity is the overall guideline that size and control flow are measured

against.

Expandability : "Software possesses the characteristic of expandability to

the e;xtent that a physical change to information, computational functions, data

storage or execution time can be easily accomplished once the nature of what is

to be changed is understood" (AFOTEC, 1988:6). Measuring expandability shows

how much room for growth has been designed into a program in relation to its

storage space, timing requirements, etc.

Testability : "Software possesses the characteristic of testability to the

extent it contains aids which enhance testing" (AFOTEC, 1988:6). It Is

important that the software be instrumented for testing after modification, so

that correct program execution can be verified and validated.

Traceability : "Software possesses the characteristic of traceability to the

extent that information regarding all program elements, and their

implementation, can be traced between all levels of lesser and greater detail"

(AFOTEC, 1988:7,. This characteristic measures how easily a maintainer can

0.



trace the operation of a module to its documentation and can follow functions In

"- the documnritation to the modules that. perform the functions.

These characteristics form the criteria for analysis of what. makes

software more maintainable. While these characteristics aro not the only ones

* that can be measured to assess software maintainability (others include

reliability, modifiability, etc.), they appear to be a representative sample of

software quality characteristics (Boehni and others, 1980:229-231 and Peercy,

* 1981:343-344).

Problem

The AFOTEC evaluation guidelines are labor intensive and expensive toS

implement. These guidelines do riot evaluate the overall software design. While

the evaluation of different types of systems may require a different emphasis,

no procedures exist to weigh the seven characteristics. Also, only a fraction of

the delivered code is fully assessed.

Approach

* OSpecific additional software maintainability metrics will be identified for

incorporation into the Vol. 3. These metrics will measure aspects of

maintainability that are presently not adequately covered. They will be

* automatable so that more labor will not be added to the evaluators' workload.

Algorithms to develop a program to measure these metrics will be developed,

although the actual measurement tool will not be built.

Assumptions

Two assumptions were made about the researched software metrics. First,

the metrics must enhance the measurement of software maintainability. There

are many different types of software metrics. Some measure other factors than

5



those related to maintainability. Second, the metrics must fit, into the scope of

the desirable attributes being measured. These desirable attributes were

described In a previous section.

* From the constraints explained in the previous section, the software

mretrics that will be suggested to AFOTEC will be limited to metrics that.

Will fit, into the Vol. 3 process

S2. .Can be automated.

3. AFOTEC can be convinced to use and acquire a tool to automate the

calculation of these metrics.

- A plan to validate these new metrics will be proposed. Algorithms to

show how these raetrics should measure source code will be developed.

Sequence of Presenration0
Chapter Two presents a review of classic and newer software metrics.

Chapter Three discusses criteria to determine which metrics measure

maintainability. Chapter Four describes in detail which metrics will be

suggested to AFOTEC and how these metrics should be Incorporated within the

existing guidelines of the Vol. 3, along with a method to validate the metrIcs'

use. Chapter Five includes my conclusions and recommendations for further0
research.

-0

.:i 6



II. Literature Review

In.trod uc t in 0

Research to date has not found metrics that specifically measure program

* maintainability; most metrics measure program complexity. Complexity can be

defined as "a characteristic of the software interface which influences the

resources another system will expend or commit while interacting with the

- softwaive" (Conte and others, 1983:17). According to Harrison, "maintenance is

most affected by program complexity" (Harrison and others, 1982:65). As

program complexity greatly contributes to maintainability, I will use these

* •complexity metrics to mcasure maintainability.

This chapter presents a review of classic and newer software metrics.

Classic metrics are piorveering work such as as Lines of Code, Halstead's

* Software Science, and McCabe's cyclomatic complexity which have been

extensively examined In the literature (C6t4 and others, 1988:121). The metrics

are presented in three sections, as size metrics, as data anad control structure

* metrics, and as composite or Aybrid metrics. This list of metrics is not intended

to be inclusive, but to show what factors of program complexity are measured

and the metrics that attempt to measure these factors.

Size Metrics

Size metrics measure program size and reflect that the volume of

information to be studied to understand the program contributes to its

compiexity (Harrison and others, 1982:66). Because the effort needed to develop

a program largely depends on the amount of code written, size measures have

been used to assess the amount of effort required. The program size is

Important for three reasons (Conte and others, 1986:32):

7



I. It is easy to compute after the program is completed.

* 2. It is the most important factor for many models of
software deve]opment.

3. It is the basis of most productivity measures.

Lines of Code. The earhlest and most familiar software size measure is

the number of lines of source code (Levitin, 1986:314). This measure is labeled

S and Is measured in lines of code (LOC) or thousands of lines of code (KLOC).

While this may seem to be a very simple and easily-calculated metric, much

debate has centered around how LOC should be counted.

While this measure is natural for some languages such as various assembly

languages and FORTRAN which have very close to a one-to-one correspondence

between the number of statements and the lines of a program, newer languages

that allow a more free format cannot be counted quite so easily. For example,

Figure 1 shows two code fragments which are functionally equivalent, but have

apparently different counts for LOC.

1 while V <> 0 do while V (> 0 do begin
2 begin T -= U mod V; U := V; V T
3 T U mod V; end;
4 U V; GCD =U;
5 V T;

* 6 end;
7 GCD := U;

Figure .. Differing statement Counts for the Same Function
*• (Levitin, 1986:315)

These examples have LOC counts of seven and four. As they are

*O semantically the same program, the LOC count must be measuring the size of the

program's representation, instead of the actual size o.f the program (Levitin,

8



1986:315). Another problem with the LOC count is that it is possible to pad

the program with blank lines and comments to give artificially high LOC counts.

Many languages require descriptive non-executable statements, such as

COBOL's ENVIRONMENT division or Pascal's Var section (Conte and others,

1986:35). Some researchers have suggested that since these are not executable

statements they should not be counted in the LOC. Others have said that since

understanding a program's data is critical to understanding the operation of the

program, the variable declarations and program headers should be included in

the LOC count. A simple solution to this problem Is to have a consistent

counting scheme and always use It to count LOC. An example of a counting

strategy comes from Conte: "A line of code is any line of program text that Is

not a comment or blank line, regardless of the number of statements or

fragments of statements on the line. This specifically includes all lines

containing program headers, declarations, and executable and non-executable

statements" (Conte and others, 1986:35).

LOC is not a context sensitive software metric. As an example, twenty

lines of conditional statements that control manipulating dynamic memory

constructs will be inherently more complex than twenty lines of simple variable

assignment statements. But with the LOC measure, each program will have the
0

same count.

Halstead's Software Science••N. Dr. Maurice Halstead developed a

measure of program size within his Software Science software metrics. This

metric measures the number of operators and operands in a program (Levitin,

1986:216). Operators include arithmetic and logic symbols, functions, and

delimiters such as + and -. Operands include variables, constants, and labels,
0

and any other symbol that represents data.

9



From two basic quantities Ha!stead's program length metric, N, is

4, calculated (Conte and others, 1986:37):

N = N1 + N2 (1)

where

* Ni = the total number of operators
N2 = the total number of operands

As with LOC, there is some difficulty determining what should be counted

as an operator and what should be counted as an operand. In some languages,

such as LISP, the difference between operators and operands is not clear. In a

procedural language like Pascal or Ada, a function that is embedded in another

function, such as "WRITE(COS(25))", can be considered both an operator and an

operand. The COS[INEJ function is an operator because it operates on the data

that is input, but it is an operand also because its resulting value is used as

data for the WRITE function.

Halstead originally stated in his counting rules that Input/output

statements and program declarations should not be counted. Also, the statement

labels used as branching addresses for GOTO statements were not considered

operands, but as an Integral part of the GOTO's that branched to the label.

Currently, research suggests Software Science counting rules should Include

counting the symbols in the declaration and input/output statements, as well as
0

counting each distinct label as another operand (Shen and others, 1983:157).

Figure 2 shows Ramamurthy and Melton's example of counting operands

and operators (Ramamurthy and Melton, 1986:309). The guideline of counting
0

operators within the declaration statement is not followed in this example. The
## "+ , _*1 M C

eleven operators are "BEGIN END",, ", ",", " ":=", I "+ . . . .

"writeln", and ".". These operators are used 23 times. The five operands are

10

0



* [ PROGRAMI(input, output);

VAR
a,b,c,d,m : integer;

BEGIN
readln(a,b,c,d);

Sa a + b;
b := a + c;
c b *d;
w a + b - c;
.ziteln(m)

END.

L

Figure 2. Halstead's N Example
(Ramamurthy and Melton, 1986:309)

listed after the VAR statement. These operands are used 18 times. This gives

values of 23 for Ni, 18 for N2, and 41 for N.

* While Halstead's overall theory of Software Science has been criticized as

having no valid theoretical basis (Hamer and Frewin, 1982:198), the N measure

has not been faulted as some other metrics have been. Shen states "there is a

* large amount of empirical evidence to suggest IN's] validity, although it appears

to work best in the range of N between 2000 and 4000 for programs written in

Fortran, Cobol, and PL/S" (Shen and others, 1983:163). But like LOC, this

* measure is not context sensitive in that it does not weight some operators as

being inherently more complex than other operators.

Structure Metrics
S

This category Investigates the system design structure, and constitutes

the data relationships among system components and the control flow within

system components. Some structure metrics have at advantage over size metrics
b
because they can be applied early in the system lifecycle since they are based



on higher-level design features, not the actual source code (Kafura and

* Canning, 1985:379). Some control structure metrics can evaluate the complexity

of a program's structure using its Program Design Language (PDL), which is

available before the source code. Some data structure metrics can evaluate a

* program's complexity if the program's data flows are known before coding.

Data Structure Metrics. One factor that effects the complexity of a

program is the amount of data the program uses, how it is used, and its

o configuration within the program.

$Sn. Span is a measure of the "number of statements between two

successive references to the same variable" (Conte and others, 1986:56). A

- large span increases the difficulty of determining the value of the variable at

any point. A large span could require a maintenance programmer to search

through many lines of source code to understand a variable's usage (Harrison

* and others, 1982:67).

According to Harrison (Harrison and others, 1982:67), span is not

supported by empirical evidence that it represents the complexity, and,

• therefore, maintainability of a program. But he does state i~hat span is

Intuitively appealing, because a variable with a large span is inherently

difficult to keep track of. Figure 3 shows Harrison's eyample or span between

* data references.

Information Flow. Previous metrics measure complexity within a

single module. Because many programs contain more than one module, some way

O to measure the connections among modules is needed. information flow Is a

method to measure the sharing of data among modules. The information floow

"metric captures properties of module connections that are more detailed than

just "calling" relations. Information flow measures the amount of data that

flows into a module and is modified by the module.

12

0



X-SPAN Y-SPAN

X := Y;

* YX

Figure 3. Span Example
'Harrison and others, 1982:66)

Harrison and Cook describe information flow as a "macrolevel" metric

(Harrison and Cook, 1987:215). A macrolevel metric determines the
40

interrelationships of the subprograms to each other in order to understand the

behavior of the overall system. These metrics "concentrate on the

communication links between subprograms--the more links, the more complex the

macroleve! understanding" (Harrison and Cook, 1987:215). A potential problem

with each link is that it may introduce "side effects" into other system

subprograms (Harrison and Cook, 1987:215).

The information flow complexity value for a module is determined by two

factors' the complexity of the moduie's code and the complexity of the

connections to its environment (Henry and Kafura, 1981:513). The complexity of

the connections is evaluated by the module's fan-in and fan-out. The fan-in

is the number of local (parameter) data flows into the module and the number of

global data structures that the module gets information from. The fan-out is

13



the number of data flows from the module and the number of global data

* structures that the module modifies.

It is interesting to note that while the complexity of the module's code is

mentioned as a factor within information flow, it is disregarded in later

* calculations. Henry and Kafura state that "code length is only a weak factor in

the complexity measure.. .this factor may be omitted without significant loss of

accuracy" (Henry and Kafura, 1981:514). But other empirical validations of this

metric (Kafura and Canning, and Harrison and Cook) use length as a factor in

the information flow calculations. Kafura and Canning refer to the use of

length (LOC) with information flow as "weighted information flow" and consider

*O it a hybrid (Kafura and Canning, 1985: 380).

Henry and Kafura evaluated different formulas to calculate the complexity

of the modules in the Unix kernel. The formulas included:

* (length ** 2) (2)

(fan-in * fan-out) (3)

(fan-in * fan-out) ** 2 (4)

S(length) * (fan-in * fan-out) ** 2 (5)

where !ength is the number of lines of text in a procedure, including embedded

comments but not including the comments In the procedure's "header block"

* (Henry and Kafura, 1981:513).

They found "the connections of a procedure to its environment, namely

(fan-in * far-out) - 2. is an extremely good indicator of complexity" (Henry

* and Kafura, 1981:516). Figure 4 shows an example Information flow count using

this formula. This Is a correlation to the number of changes made to each

module. They stale that studies have shown a high correlation between program

* changes and error occurrences, which relates to maintainability (Henry and

Kafura, 1981:515). Kafura also uses information flow to detect outliers in the

14



number of errors and amount of coding time required for large NASA Fortran

projects, as further validation of the metric (Kafura and Canning, 1985:382).

Outliers are those components that are more than one standard deviation above

the mean for coding time required or in the number of errors they contain.

Harrison states that his data "suggests that the metrics [information flowi work

quite well in identifying 'extraordinary cases"' (Harrison and Cook, 1987:218).

procedure EXAMPLE1(Inputl : integer;
Input2 : integer;

var Outputl : integer;
* var Output2 : integer);

begin

Output2 10;
Globall Inputl;

* Outputl Inputl + Input2 + Global2;
Global2 Outputl * Output2;

end;

Figure 4. Information Flow Example

Figure 4 shows an example of source code in a Pascal-like language. The

procedure EXAMPLEI has two loca) data flows and one global data flow Into the

procedure, for a total fan-in of three. This procedure has two local data flows

and two global data flows out of the procedure, for a total fan-out of four.

Note that the global variable Global2 Is used as both an input and an output

flow of information. The Information flow complexity for this module = (3 * 4)

"2, which Is 144.

15



40

Coupling is "the degree of interdependence between two modules" (Page-

• Jones, 1980:101). Minimal coupling reflects that each module is as independent

as possible from other modules. This indicates that a system has been

partitioned appropriately (Page-Jones, 1980:101). The information flow metric

* can indicate the degree of coupling between procedures via the fan-in and fan--

out terms. According to Henry and Kafura, this can reveal the existence of

three types of problems for a procedure (Henry and Kafura, 1981:514). High

* fan-in or fan-out suggests that a procedure may perform more than one

function, which Is contrary to structured decomposition rules (Page-Jones,

1980:119). Related to this point is that information flow measurements may

* indicate a procedure that was inadequately refined and needs to be divided into

two or more separate procedures. A procedure having high complexity may be a

"stress point" that. has a large amount of information traffic. Because of the

* large number of potential effects on the entire system, the procedure may be

difficult to modify.

Henry and Kafura state that one of the benefits of information flow is

* that the data necessary to compute the metric is available during the design

phase of software development (Henry and Kafura, 1981:511). This is a

significant advantage over many of the metrics explained here, which cannot be

* measured until the source code has been delivered. Information flow is not

related to the source language used, which means that it Is widely applicable.

Control Structure Metrics. These metrics measure how easily

* understandable the control structures are in a program. These metrics measure

the number of control transfers within) a program, or how the control transfers

are interrelated.

* McCabe's (C'yloratle" Complexity. Another classic metric is McCabe's

cyclomatic complexity measure. Kearney notes that "McCabe considers the

16



program as a directed graph in which the edges are lines of control flow and

the nodes are straight line segments of code. The cyclomatic number represents

the number of linearly independent execution paths through the program"

(Kearney, 1986:1045). The metric measures the number of basic paths through a

program using graph theory to represent the paths instead of actually counting

them, which may be impractical (McCabe, 1983:3).

To calculate a module's cyclomatic complexity, a directed graph "G" is

generated, reflecting the control structure of the module. A node corresponds to

a block of sequential code. An edge corresponds to a control transfer between

nodes. The number of connected components is the number of distinctS
procedures, which is typically 1. The formula for calculating the cyclomatic

complexity of a weakly connected flow graph is given in (McCabe, 1983:4) as:

v(G) = e - n + 2p (6)

where

e = the number of edges
n = the number of nodes
p = the number of connected components

and v(G) is equal to the number of basic paths in the measured program.

Figure 5 prese-.Ls an example of code from Ramamurthy and Figure 6 shows its

directed graph representation.

Construction of a directed graph can be time-consuming. Fortunately,

Harlan 1). Mills proved that the cyclomatic complexity of a structured program is

one more than the number of decisions (McCabe, 1983:9). This means that v(G)

can "be readily caltulated by simply inspecting the program" (Myers, 1977:62)

and automated program scanners have been built to calculate the complexity of

p) r o g t-) ainas

17
S0



From Figure 6 the number of nodes is n = 1i. The number of edges

connecting these nodes is e = 13, with an extra arc from the exit node to the

entry node added to create a strongly connected graph. T'his extra arc adds

one to the cyclomatic number, so the, nurmbet of connected components p Is used

* instead of 2p. The number c" conne•Lt1 oon~ponents is p = 1. Therefore, v(G)

= 13 - 11 + 1 = 3. Note that this number can be easily calculated by

inspecting the program. Adding one to the number of decisions (IF statements)

equals 3.

0 PROGRAM2(input, output);

VAR
a,b,c,d,m : integer;

BEGIN
readln(a,bc,d);

* IF a > b then
IF b > c then

m : a + b
ELSE

i := b + c
ELSE

-* m := c + d + a;
writeln(m)

END.

Figure 5. Example Program
(Ramawurthy and Melton, 1986:309)

Empirical evidence supports the cyclomatic number as a complexity

measure. Curtis stated that cyclomatic complexity is "related to the difficulty

programmers experience in locating errors in code" (Curtis and others, 1980:307).

Henry said the cyclomatic complexity metric is a "useful Indicator of the
,0

occurrence of errors" (Henry and others, 1983:130).

18



*

Entry N.

/
//

Type of nesting'
IF THEN ELSE within DO

x / WILE L-2, C-3
Exit

Figure 6. Example Directed Graph Representation of Figure 5
(Ramamurthy and Melton, 1986:310)

0

Shepperd, to the contrary, states that the high correlations obtained

between cyclomatic complexity and errors is invalid because "the fundamental

problem remains that without an explicit underlying model the empirical

'validation' is meaningless and there is no hypothesis to be refuted" (Shepperd.

1988:35). He points out that researchers have also tried to measure inter-

module complexity with cyclomatic complexity, and that cyclomatic complexity

can only measure intra-module complexity. MCabe suggests to measure the

complexity of a program, the cyclomatlc complexity of each module should be

added to the number of modules, and an overaii complexity score will be given.

This does not take into account that an astute partitioning of a program into

mcdules makes each smaller module's control flow easier to understand. Also,

the data flow among mcliules is ignored completely.

19

1



A weakness of cyclomatic complexity is that it cannot measure the

* complexity of software that is due to size (Ramamurthy and Melton, 1986:310).

A 10000-line program with only ?, decision points is Intuitively complex, but its

cyclomatic complexity is not high enough to attract attention, as McCabe states

*O that 10 is a "reasonable" upper limit for cyclomatic complexity (McCabe, 1983:9).

This example is somewhat far-fetched, but it Illustrates the problem. Because

cyclomatic complexity looks at a graphic representation of the program, and not

-- the program itself, cyclomatic complexity will not be able to reveal a more

structured version of the program because the same number of conditional

statements will exist in each version (Woodward and others, 1983:103).

* A problem that many researchers have had with cyclomatic complexity is

that It does not take the nesting levels of branch statements into account

(Myers, 1977:62). According to Harrison, "predicates with compound conditions

* are more complex than predicates with a single condition" (Harriscn and others,

1982:70). Myers suggests calculating complexity as a range, with the lower

bound as the number of decision statements plus one, and the upper bound as

-- the number of individual conditions plus one (Myers, 1977:63). This modification

of cyclorratic complexity apparently allows a finer distinction between programs

with nested conditional statements, but no experiments have been published

_ supporting this viewpoint.

Knot Count. Knot count was derived from two simple measures of

complexity. In 1968, the Communications of the ACM publishud the now famous

* letter by 'Dr. Edsger W. Dljkstra entitled "Goto Statement Considered Harmful."

In this letter, Dijkstra stated that the "quality of programmers is a decreasing

function of the dernsity 0f GOTO statements" (Woodward and others, 1983:10i)

* This letter suggested that the number of GOTO statements In a program is a

simple measure of ,nstrucmLuredness. Discussing the theoretical basis of the

20



knot count metric, Woodward points out that ip the book Software Metrics Glib

states that "logical complexity is a measure of the degree of decision making

within a system and that the number of IF statements is a rough measure of

this complexity" (Woodward and others, 1983:101).

Knot count measures the "relations between the physical locations of

control transfers rather than simply their numbers" (Harrison and others,

1982:71). Knot count is a measure of program "unstructuredness", as it looks at

the number of GOTO statements to count the number of crossing control

transfers. These control transfer crossings are knots, and the greater the

number of knots, the more complex the program Is. Knots represent the

"unstructuredness" of the source code text, but does not represent the program's

underlying control flow (Howatt, 1988).

Woodward defines a knot as:

If a jump from line a to line b is represented by the
ordered pair of integers (a,b), then Jump (p,q) gives rise to a "knot"
or crossing point with respect to jump (a,b) If either

1) min(ab) < min(p,q) < max(a,b)
"* •and max(p,q) > max(a,b)

or
2) min(a,b) < max(p,q) < max(a,b)

and min(p,q) < rnln(a,b) [Woodward and others 1983:1021

An example from Woodward with nine knots Is illustrated in Figure 7. An

advantage that the knot count has over cyclomatlc complexity is that a program

that Is unstructured and has a high knot count can be rewritten in a more

structured fashion and have fewer knots. This Is because the number of knots

in a program depends on the order of the statements (Woodward and others,

1983:103)Y Harrison says the knot count is an interesting metric, but no

research has applied It. to the maintenance of programs (Harrioon and others,

1982.71).



* CALL TPR
IF (ZR) 500, 500, 100

LTZ.)!0o CALL TED
>150 IF (Z3) 200 200 550

2200 ZG = ZG + 1
ZC = 0

* CALL TCO
>-- 300 CALL TRA

- - GOTO 2000
--- ->500 CONTINUE

Z3 =1
GOTO 150

* j >550 CONTINUE
CALL TEC
ZB = ZB + 1
ZC = ZC + 1

- GOTO 300
>2000 RETURN

* END

K4 = NOT

* •Figure 7. Knot Example
(Woodward and others, 1983:104)

MEBOW _ Mas ure Based On Wefhts). MEBOW was developed as a
0

control flow metric that measures complexity as well as the three metrics

cyclomatic complexity, knot count, and Harrison's SCOPE ratio, but does not have

their deficiencies (Jayaprakash and others. 1987:238). MEBOW is a modification

of the cyclomatic complexity with the knot count added, and with different

weights for control structures.

The de•,elopers of MEBOW state that the program complexity Is best

measired by coatro) fiow metrics, but that factors other than control flow

metrics must also be considered (Jayaprakash and others, 1987:238). This is

why they count knots and weigh different types of branch statements
0

differently. Following Woodwar-d's argument that knots create unstructured

22

--0



programs, they state "the identification of knots helps in assigning higher

*• control flow complexity to programs containing unstructured forms" (Jayaprakash

and ethers, 1987:240).

MEBOW weighs a backward branch or knot higher than a forward branch or

*O knot under the principle that while a backward branch may not necessarily lead

to a loop, it does make a top-down reading of a program more difficult, and

therefore more complex. Explicit branch statements such as a GOTO also have a

Shigher weight than an implicit branch that is associated with a structured

programming construct such as a FOR loop.

To determine the MEBOW value for a module, the sum of the weights of all

* •branches and knots is calculated. Branches and knots are the only two basic

programming elements that are assigned weights in MEBOW. This process is

extended in the same manner as cyclomatic complexity is across modules, as the

* •MEBOW value for more than one procedure within a program is the sum of each

procedure's MEBOW value (Jayaprakash and others, 1987:241).

As with the knot count, there is no research that shows MEBOW

* •effectively measures the maintainability of programs. Also, MEBOW's authors

state that it can be used to measure inter-procedure complexity, but it ignores

the data flow between procedures.

0
Comnp~o~site i�Hybrid Metrics

A composite or hybrid metric is one that does not Just measure a single

factor to determine the complexity of software. As suggested by Kafura, Conte,

and Hansen, different types of metrics measure significantly different aspects of

software. For example, size metrics alone cannot reflect which of two 1000--line

procedures Is more complex. Control structure metrics cannot differentiate
-0

between one program that uses a global pointer structure and another program

23

-0



that performs the same function that operates on an array passed as a

* parameter through a well-defined interface.

Since most metrics capture only one factor of complexity, It makes sense

to use different metrics and to combine the results into a vector. Harrison, and

* Li and Cheung, all assert in different articles that using a hybrid metric to

measure complexity is "the most sensible approach. Software complexity is

caused by so many different factors that measuring only one of them cannot

* help but give unreliable results for a general case" (Harrison and others,

1982:78; Ll and Cheung, 1987:708).

As empirical evidence that this type of composite metric does work,

"* Kafura used a combination of the LOC and information flow metrics to determine

procedures that had higher error and coding time rates In three large NASA

Fortran projects. The composite metric determined the error and coding time

- outliers more often than any other code or structure metric he tested.

Two other composite metrics that have some data supporting their use are

Ramamurthy and Melton's synthesis of Software Science metrics and the

* cyclomatic number, and LI and Cheung's NEW_1. The Software Science and

cyclomatic complexity metric weighs the operator and operand count by the

nesting level, so that an operator in a purely sequential program is not

* counted, while the same operator nested three levels deep would count as three

operators. Ramamurthy and Melton have evidence that weighted length and

effort detect differences in complexity between programs better than non-

* Oweighted length and effort do (Ramamurthy and Melton, 1986:312). NEW_I is a

composite of SCOPE, which is a control graph metric, and the Software Science

effort metric. This metric is a combination of a graph metric with a size metric

24



in an attempt to receive the benefits of both types of metric (LI and Cheung,

* 1987:702).

When using two or more metrics, some difficulties interpreting data may

arise. As an example, a and b are metrics. If with two procedures 1 and 2, al

* > a2 and bl > b2, then procedure 1 is apparently more complex than procedure

2. But if the metrics are used to measure the same two procedures and results

of al > a2 but bl < b2 occur, it is not clear which procedure is more complex.

- According to Conte (Conte and others, 1986:80), this problem is why more

researchers do not use composite metrics.

Halstead's Softwidare Science M. Another Software Science metric is Effort

* •"E", which is used to measure the number of "elementary mental discriminations"

(Shen and others, 1983:156) that a programmer will have to make to produce the

desired program. This is termed a hybrid because It calculated based on

* estimations of the number of "mental comparisons" needed to write a program of

a certain length, and an estimation of the "program level", which represents a

program written with minimum size (Conte and others, 1986:83). E can be

"* approximated by (Conte and others, 1986:84):

E= (ll * N2 * N * log2 q) / (2 * r02) (7)

where

*nl = the number of unique operators
ni2 = the number of unique operands

S= nl + n2 (81

N = N1 + N2 (1)

Using the example source code from Figure 2, the number of unique

operators is ii = 11. The number of unique operaids is 112 = 5. NI was 23.

and N2 was 18. From these values, the estimated value of Effort is E 3247.

--0

25

-0



The E metric was originally used to relate the actual time a programmer

* would take to implement a program. This was questioned by other research,.rs

when they realized that this suggests an arbitrary limit on the mental capacity

of all programmers (Shen and others, 1983:156). While there is little evidence

* supporting the claim that E can predict the time to implempnt a program, there

is empirical evidence that this metric correctly estimates maintenance effort and

the number of errors in modules (Shen and others, 1983:162 and Henry and

* others, 1983:130). Discussing studies conducted at Purdue and at General

Electric, Shen claims "these two studies tentatively support the conclusion that

a program with a lower E measure is easier to comprebend that an equivalent

*• program with a higher E value" (Shen and others, 1983:162).

Hansen's Pair (Cyclomatic Number Operator Count). Shortly after Myers

suggested his extension to the cyclomatic complexity metric, Hansen came up

- with a different way to modify cyclomatic complexity to get be*•er data. He

wrote that while Myers was correct about the differences in complexity between

multiple conditions in the same branch statement and a branch statement with

* only one condition, he stated that the difference was not relevant because no

matter how many conditions the branch has, it is going to one location or the

other (Hansen, 1978:30).

* Hansen decided to not extend cyclomatic complexity, but to use a size

metric also. After experimenting, he decided that the unique operator count was

the best in combination with cyclomatic complexity (Hansen, 1978:33). He did

" not Include any empirical evidence that he had validated the method, though.

Oviedo's model of program cornpLexity. Oviedo developed a composite

metric that measures both control flow complexity and data flow complexity, and

* reports total program complexity as the sum of the two. Control flow "of"

complexity is calculated as the number of edges In a control flow graph (Oviedo,

26



1980:148). Data flow "df" complexity will be explained in a following paragraph.

The program complexity (C) is calculated as (Harrison and others, 1982:76):

C = acf + Pdf (9)

where a and P are weighting factors, which are set to one (Ovledo, 1980:151).

To understand "df", two terms must be defined. A variable is "locally

available" for a block if the variable has been defined within the block. A

variable is "locally exposed" if it Is referenced in a block but it has not been

defined yet in the block. The "df" of a node or block Ni is defined as "the

number of prior definitions of locally exposed variables in Ni that can reach Ni"

(Harrison and others, 1982:76). Figure 8 from Harrison shows code that will be
0

used for an example "df" calculation, along with its program flow graph

(Harrison and others, 1982:76).

The "d'" of No is always 0, because no prior definitions can reach this
-0

block. The two nodes N1 and N2 each have "df" of 0, because they are

assignment statements that use constants, and no variables are locally exposed.

The node N3 has three locally exposed variables, x, J, and k. Each of these

exposed variables has been defined twice before node N3, so node N3 has a "df"

of 6. Adding the cumulative "dr" of all nodes gives an overa!l "df" of six, as

df 0  = df 1 = df 2 = 0. As the control flow graph has four edges, "cf" is four.

The overall program complexity "C" = 10.

The Oviedo program complexity has the same Fmltations as other control

flow graph metrics. [he size complexity of any node will not be measured, and
O

establishing a weighting factor for a will be difficult (Harrison and others,

1982:78). No empirical evidence has been reported to show how well this

combination of control structure and data structure metrics work together.

27

0



-- READ n, x, k
Node 0 If n =1 then

x 1
Node 1 j :=2

a 5
ELSE

* k 1
Node 2 j := 3

- ENDIF
Node 3 Wd := x + j + k

. nOo

n2

-o3

Figure 8. Program Complexity Example
(Harrison and others, 1982:76)

SummaLy

This chapter has presented exnmples of size, structure, and composite

metrics. The metrics shown are representative of the three different types of
-0

metric.

The size metrics are easy to calculate from source code, but measure

complexity by considering that what constructs the programs are developed from
0

are Irrelevant, only the number of these constructs is important. These metrics

28

So



cannot be used until far Into the software development cycle, as they need

*O actual source code. This means that they are not good as design tools, but

they can show which procedures will have the greatest number of changes and

errors during software test and maintenance.

* Some data structure metrics can be used earlier in the design cycle, which

can give early feedback to the quality of the software. The structure metrics

are better able to test the structure of algorithms and data structures, which

* •are the basic framework of all programs, as Niklaus Wirth suggests by the title

of his classic book Algorithras + Data Structures = Programs.

Composite metrics are apparently not in common use. But a careful

- selection of different types of metrics that can complement each others'

weaknesses can give a software engineer an insight into the program structure

and possible problem areas that no single metric can.

2

29

--



III. Metric Selection Criteria
0

Introduction

This chapter describes a set of guiding properties that were used to

* evaluate software complexity metrics. These properties are presented as

guidelines to determine how well individual metrics measure complexity, and

therefore measure maintainability. Two benefits are derived from comparing the

* metrics to these criteria: the metrics that more completely measure complexity

are identified, and the characteristics each metric best reflects are indicated.

The utility of the first benefit is obvious, but the need for the second

* requires explanation. If no single metric meets all criteria, metrics that

complement. each other can be used instead. Using these criteria to screen the

metrics shows how each metric can best be applied. As Kearney says, "the

*O properties of a metric determine the ways in which it can be used" (Kearney

and others, 1986:1046). If, for example, a single metric that measures control

flow complexity does not. measure data flow complexity, it can be combined with

* another metric that meets the data flow complexity criteria and more complete

coverage will result.

After the presentation of these criteria, a comparison shows which metrics

* meet each criterion. The metrics that best fit all of the criteria are discussed.

Following that section, a summary of the selection guidelines and the metrics Is

presented.

0
Criteria for the Selection of a Maintainability Metric

These criteria are basic guidelines to detr'rmine how well a metric

measures complexity. These guidelines are loosely arranged into three overall
0

groups. The first five criteria are generic and could be used to evaluate other

30



0

types of metrics, such as productivity metrics. They do not determine how well

* a metric reflects complexity; they verify that the metric Is generally applicable

across different software. Three criteria are presented to rate how well metrics

measure a program's control flow complexity. The last four criteria indicate a

* metric's measurement of a module's data flow complexity.

These guidelines are not equally important in the measuring of a

complexity metric. For example, the two criteria "Ranking Basic Control

* Structures" and "Nesting and Compound Conditions" are both contained in the

criterion "Accurately Reflect Control Flow". They are explicitly enumerated

because each criterion is Important, but neither ls as weighty a consideration as

* •overall control flow.

,Although the criteria are not equaliy important, a definitive weighting of

the criteria's relative importance is not given, except for the implied

S•subordination within the control flow and data flow complexity sections.

Research to date does not suggest any obvious ranking of criteria. Therefore,

the criteria are arbitrarily being considered equally. With this constraint, any

• metric that satisfies more criteria than another will be judged to better measure

complexity.

clear and Unambiguous. This criteria determines how easily the metric

* can be evaluated and how easily the result of the evaluation can be compared

to results of other evaluations. As Conte expresses, "does the metric icad to a

simple result that is easily interpreted" (Conte and others, 1986:22)? The

* metric should be clear and unambiguous so It can be calculated from Just the

source code (Levitin, 1986:314).

lines of code (LO(') Is an example of a metric that Is not clear and

- unambiguous. While it may applear to be very easy to count, many researchers

31

0



have different counting strategies. This can lead to different LOC values from

* the same source code.

Halstead's N metric is another metric that appears to be simple to

calculate, but presents some difficulty in Its calculation. Determination of

o which tokens should be counted as operators and which tokens should be

counted as operands is not always clear. Even after a counting strategy has

been defined and adhered to, some runction calls defy analysis because they act

*O as both operators and operands.

Intuitive. A metric should be intuitively appealing. It should correspond

to a user's innate perception of a program's coix.plexity. The complexity value

* determined for a less complex module should be less 'than that of an obviously

more complex module. It must always te positive and additive (Levitin,

1986:314; Jayaprakash and others, 1987:241).

For example, if two distinct pieces of code are combined, the complexity

value for the joined code should be greater than the complexity value for either

piece. Art optimum solution occurs when the complexity value for the joined

* code equals the sum of the complexity values for the separate pieces.

Language Independent. A meLric that is based on a single language is not

generally applicable. A metric should be as universally applicable as possible

* so that it can be used to evaluate software written in any programming

language (Jayaprakash and others, 1987.241).

A metric that estimates complexity based on the number of GOTO

* statements in a pograrn may be a valuable quality measurement tool when used

with the FORTRAN language. This metric would be worthless when used with

the Prolog langua'e, as Prolog does not have any GOTO statements. This metric

* would also be of limited utility '- measuYing the complexity of modules written

in Pascal or Ada. While both of these languages allow a ý, OTO statement, such

3;



use is heavily discouraged. Therefore, the lik(lihood of determining a

reasonable value for a Pascal module's complexity using this metric is negligible.

The FORTRAN language allows only a single statement to be placed on a

line. This simplifies the calculation of LOC. Other languages such as JOVIAL,

Pascal, and C have special characters that delimit the end of a statement. With

these languages, several statements can be placed on one line. This can

complicate calculation of LOC for modules written In these languages. For this
0

reason, LOC is not a language Independent, metric.

Prescriptive. A complexity metric should not only measure the software's

complexity, it should also reveal how the software should be modified to

Sminimize complexity (Keariey and others, 1986:1047). The metric's results

should direct the software's maintainers to the modules that need to be

changed, and it shoulW -ýveal to the maintainers what changes need to be made.

If a module has a large value for information flow (INFO), that should

suggest to a developer or maintainer that the module needs to be further

decomposed into more manageable modules, and the inter-module communications

should be simplified. A possible complicatho is if a software developer wants

to attain the smallest value for INFO, he can write F program as a single

module with no Interconnections between modules. This programming practice
0

would increase the complexity of the program, not decrease it as the INFO value

would lead us to believe.

Robusisness. A trivia.I reordering of the program's statements should not
0

lessen the complexity th,: metric reflects. A reduction in a metric's

measurement should result from an Improvement In the program measured

(Kearney aand others, 1986-1047). Adherence to this criteria forces any

programming practice that reduces the metric value to also reduce the program's

33

0



complexity. As Conte asked, "is the metric sensitive to the artificial

* manipulation of some factors that do riot affect the performance of the software"

(Conte and others, 1986:22)?

As an example, a program that scored high on McCabe's cyclornatic

complexity measure because of the number of loops could be rewritten with the

loops as in--line code. This would lessen the cyclomatic complexity score, but

miiight significantly increase the complexity of the module.

* Accurately Reflect Control Flow. The control flow in a program is the

path through a program that is followed during execution. By measuring the

number of paths through a module, a determination can be made if the module is

* becoming difficult to understand and should be partitioned Into separate, smaller

modules (McCabe, 1983:3). A satisfactory control flow ms.trlc should measure

Low sasily understandable the control structures are in a prograrLm.

- Ranking Basic Control Structures. Structured programming

methodology recognizes three basic coptrol constructs: sequential, selection, and

repetition constructs (Prather, 1984:341). The sequential statements have the

* lowest control complexity, as the flow of control is always to the immediately

fol!owing statement. Selection statements can branch to one or more other

statements. In a selection statement's I-asic form, either one section of code or

* anotrer it executed. Whichever section completes execution, control flow

continues from the same point. A repetition statement also has two locations

fr,.i)n which I' can continue execution. Either control goes to the statement

* following the bottom of the loop, or cmntrol passes back to the top of the loop

and the statements within the loop are executed repeatedly.

Jayaprakash recommends that any control flow metric should show that

* sequential statements are less compiex than single-selection selection

statements, which are less complex ti'an repetition statements (Jayaprakash arid

34



others, 1987:241). Repetition statements should bý' counted as more complex
-0

than selection sLatements because they cause backwards branches in the code,

and "it is well known that these fbackwards branches] cause the most difficulty

in practice" (Prather, 1984:345).

Nesting and Comipound Conditions. A complexity measure should be

sensitive to nesting In branch statements. Several researchers have stated that

one module that contains two selection statements with one nested inside Cte
0

other is more complex than a different module that has the identical two

conditions occurring In sequence (Jayaprakash and others, 1987:242; M,'ers,

1977:62). A selection statement that has a compound condition is slightly more

complex than a selection statement with only a single condition; this added

complexity should be reflected by a complexity metric.

Accurately Reflect Data Flow. Another factor that impacts
0

complexity is the data flow into, within, and out of the module. To better

understand the module's complexity, the complexity of this data flow should be

measured in addition to the module's control flow complexity. According to

Harrison, "another factor that influences software complexýity is the corfiguration

and use of data within the program. Several methods can be used to measure

complexity by the way program data are used, organized, or allocated" (Harrison

and others, 1982:67).

Indicates Data Amount. A basic factoz that determines the

complexity of the data flows within a module is the amounlt of data that a

maintainer has to comprehend. A large number of variables that must be

undcrstood can make the maintainer's assignment very difficult. These Include

the number )f variable pararu.,;t.rs and global data flowing Into and out of a
e

rurioie, an,' the variables declared and used locally to the module.

35



Shows Data Use. How the variables are actually used in a module

I s another Important determiner of module complexity. Determining which

variable is modified and where it )s modified can be arduous in a long module.

If a variable Is used and modified within a small portion of a module, the

* variable will be less challenging to remember. If, conversely, a variable is set

once at 'the beginning of a module and not used for 100 lines, the maintainer

may have a problem remembering the variable's value.

* Reflects Inter-Module Data Links. The coupling of the module is

rei'lected by the number of data links into and out of the module. Measuring

the data links is important because "by observing the patterns of communication

* among the system components we are in a position to define measurements for

complexity, module coupling, level Interactions, and stress points" (Henry and

Kafura, 1981:511).

Comparison of Metrics by Selection Criteria.

Figure 9 shows relationships betwcen metrics described in Chapter Two

and the seiection criteria developed previously. This Is presented in a table to
0

better show the relationships between size metrics and general complexity, data

structure metrics and data complexity, control structure metrics and control

complexity, and the hybrid metrics.

The metric selection criteria are shown across the top of the grid, in the

same order as they were described previously in this chapter. They are

separated into three groups Just as their descriptions were. The metrics are
0

presented In the order they were described In Chapter Two. They are shown In

the same groups that were established In Chapter Two: size metrics, data

structure metrics, contlol structure metrics, and then hybrid metrics.

36



To show that a metric satisfies a criterion, a mark is placed ir) the box

* at the Intersection of the criterion's column and the metric's row. No mark

implies that the metric either does not satisfy the criterion at all, or it does so

poorly. An indication of partial agreement (*) reflects that the metric does not

* fully meet the criterion, but It does help measure it. An indication of

substantial agreement (!) suggests that the metric fully satisfies the criterion.

Justification for the indications is given in Appendix A, Justification for Metric

- Complexity Criteria Ratings.

Figure 9 shows that size measures reflect neither control structure

complexity Por data structure complexity. Neither data structure metric can

* measure control structure complexity, nor can any control structure metric

measure data structure complexity. Oviedo's "C" hybrid metric, which measures

both control structure complexity and data structure complexity, measures the

- best across the whole spectrum. If a single metric from the above list had to

be chosen, this metric fits the criteria better than any other.

The most complete control flow complexity measure is MEBOW, which has

- more agreement indications than "C". The most complete data flow complexity

measure is INFO, which has more substantially-agree indications than "C" does

within the data flow criteria. A combination of MEBOW arid INFO has

- substantially-agree marks in eight categories and partial-agree marks in three

of the other four criteria. The only criteria that neither MEBOW nor INFO meet

is the "Shows Data Use" criteria. Because of the large coverage of metric

*O selection criteria, a hybrid metric using both MEBOW and INFO in a 2-

dimensional vector is suggested.

A strong case can be made for using a combination of the "C" metric and

- INFO. The control flow complexity would be measured nearly as well, and the

data flow complexity would be measured by all criteria. But the "C" metric

37



C I L P R C R N D A U L
1 n a r o 0 a e a m s i
e t n e b n n s t o e n
a U g s u t k t a u k
r i u c s r n

t a r t 0 t
i g i 1
v e p
e t

i
* 'v

e
Size Metrics

LOC I
Data Metrics

Span*

INFO

Control Metrics

v(G) * * ! *

40 Knot • • • • ! *

MEBOW * * I ! !

Hybrid Metrics

-•0E * * * T F
v(G), rIl

C *

(0) indicates substantial agreement (*) indicates partial agreement

0 Figure 9. Metrics vs. Metric Selection Criteria

38



0

lacks empirical evidence to show it actually measures complexity. MEBOW itself
0

has not been tested, but it has a substantial weight of evidence supporting the

use of v(G), which is a component of MEBOW. Knot count also has empirical

evidence that It measures program complexity (Woodward and others, 1983:105),

although no studies have shown a correlation between knot count and program

mainainability. Because of the amount of evidence supporting MEBOW's

components, It is being recommended instead of "C".

Summary

The purpose of this chapter was to define a set of criteria that would

- help determine which metrics are more useful than others. These criteria were

grouped into three categories, the general applicability criteria, the control flow

complexity criteria, and the data flow complexity criteria. Each of these

* criteria was explained, and justifications why each is important were given.

This list of metric selection guidelines is not a complete set of possible

properties that a metric might have. As Kearney stated, "although the

* preceding list of properties may be flawed, it is essential that the designers and

users of software complexity measures recognize that the properties of measures

constrain their usefulness and applicability" (Kearney and others, 1986:1048).

-- Overall, It must be remembered that the selection of a metric to measure

maintainability and complexity was the desired end result. The guidelines were

chosen with that in mind.

- Once a set of criteria for determining how well a metric measures

complexity was defined, they were used to gauge the metrics. By comparing

each metric with each criteria, the metrics that had the most complete coverage

* In each criteria group were uncovered. A simple comparison of the maximum

number of criteria successfully matched by the metrics brought the candidate

39

0



metrics down to two pairs. "C" was disqualified because of its lack of empirical

support.

40



IV. Maintainability Metrics Proposed for AFOTEC Use

Introduction

In the previous chapter, two metrics were selected for use in measuring

* rmaintainability. These metrics measure different aspects of software complexity,

so- a combination of these two metrics will be more comprehensive than either.

This chapter explains these metrics in greater detail than they were discussed

* in Chapter Two.

This explanation includes data that researchers have obtained during

various studies. Further empirical data that supports the use of a hybrid

-- metric for the measurement of complexity by comparing the metric value to a

module's error count is given in Appendix C, Empirical Support for Hybrid

Metrics. Further discussion of the theoretical support for MEBOW and

- information flow follows. The data both support and repudiate the use of

MEBOW, in the form of cyclomatic complexity, and information flow. Both sides

of the issue are presented, and justification why the evidence supports the

metrics' use more than the evidence against the metrics precludes their use is

given.

After considering the empirical support for hybrid metrics in general, and

*O MEBOW with Information flow in particular, metric implementation considerations

are presented. The problems associate(; with parsing source code for various

languages will be considered. Then rules for calculating the metrics will be

* given. An example of this calculation is given In Appendix D, Calculation of

Metric Value for an Ada Procedure.

The ntext discussion centers around te(, determinatic¢n of a threshold

* value, and the validation of the metrics. A method using test cases to

41

0



determine threshold ranges is given. A plan to determine how well the metrics

measure maintainability is presented for AFOTEC's use.

Proposed Maintainability Metrics

As the last chapter explained, the two metrics MEBOW and information

flow (INFO) were selected. MEBOW met as many control flow and general

complexity criteria as any other metric presented. No research has been located

that provides empirical evidence that MEBOW measures either complexity or

maintainability. This metric was proposed in 1987 and no known studies have

been completed to determine the worth of this metric. Fortunately, MEBOW"s

component metrics, cyclomatic complexity (v(G)) and knot count (KNOT), each

have empirical support as complexity measures. The authors of MEBOW

analytically argue why the combination of v(G) and KNOT is a better measure of

complexity than either metric is by itself.

INFO met as many data flow and general complexity criteria as any other

metrLb presented. INFO also has empirical tupport as a measure of complexity.

Henry and Kafura also argue that INFO would describe complexity better if it

were combined with another complexity metric, such as Halstead's length or v(G)

(Henry and Kafura, 1981:513).

The main point of this thesis is that both of these metrics should be

calculated for each module of a program. These resulting scores should be

compared to determine which modules are more complex than others, and the

scores should be compared to a threshold to Judge which modules are difficult

to maintain. This evaluation of each module separately, instead of the pro-ramn

as a whole, follows the guidelines given in the Vol. 3. That this module-by-

module examination is useful and has ample support. Henry and Kafura state

that "the complexity of a module is defined to be the sum of the complexities of

the procedures within the module. It is interesting to note that the majority of

42



a module's complexity is due to a few very complex procedures" (Henry and

Kafura, 1981:514). Basili and Perricone have evidence that errors are usually

confined to a single module, so maintenance efforts will only have to modify a

single module. They assert:

* It was found that 89 percent of the errors could be corrected by
changing only one module. This is a good argument for the
modularity of the software. It also shows that there Is not a large
amount of interdependence among the modules with respect to an
error [Basili and Perricone, 1984:451.

0

Justification of Metrics Selected

This section will explain why the MEBOW and INFO metrics should be

combined into a hybrid metric. First, a discussion of why a hybrid metric

should be used is presented. This discussion is followed by evidence that shows

how hybrid metrics were better able to measure complexity and maintainability

than other metrics.

The following section expresses arguments given to explain why MEBOW

will be better than either v(G) or KNOT. This section presents empirical

evidence that the two metrics measure complexity. Research that supports the

use of INFO is examined in the next section.

Hybrid Metric Benefits and Detriments. Chapter Two Included a discussion

about what a hybrid or composite metric is. Some evidence was presented that

supported the use of a hybrid metric. The suggestion made that the use of

metrics from different metric classes tcgether can provide a greater insight into

a module's compiexity was a main topic of the chapter.

This section expands upon the previous discussion of hybrid metrics.

Four studies are presented that conclude that hybrid metrics can better measure

complexity than metrics from a single class. These studies were accomplished

by Kafuta and Canning (1985), Harrison and Cook (1987), Ramnamurthy and Melton

43

S



(1986), and Li and Cheung (1987). The metrics tested and the conclusions

drawn from the studies are examined in this section. In the next section, data

from the four studies is presented.

Kafura and Canning prepared a study of three production software systems

written in FORTRAN. These software systems were from NASA and an extensive

database of development information was kept for each system for use at the

Software Engineering Laboratory. The Software Engineering Laboratory is an

organization composed of three members: NASA/Goddard Space Flight Center, the

University of Maryland, and Computer Sciences Corporation. This association

monitors the details of software development for later examination. The

information that Kafura and Canning used were the counts of component errors

and component coding time for each module (Kafura and Canning, 1985:380).

These data were used in an attempt to validate the use of ten metrics.

Tre ten metrics that were used to analyze the software systems were

placed into three groups: code metrics, structure metrics, and hybrid metrics.

The three metrics they considered to be code metrics were LOC, Halstead's effort

(EW, and v(G). Three of the four metrics itn the structure metrics category were

not explained in Chapter Two, and as they did not greatly affect the study,

they will not be considered here. The fourth structure metric used was INFO.

0 The hybrid metrics were a combination of LOC and three of the structure

metrics, including INFO-LOC.

They first obtained results to see If "significant differences in software

metric values are related to corresponding differences in errors and/or effort"

(I bld-380). These results showed some correlation between the metric values arid

the errors and coding times. Then the combined codineg time and error factors

were compared to the metrics, arid better correlations resulte0d. This prompted

44

0



the researchers to assert "the observations made above lead us to conclude that

* growth in the metric values corresponds to increases individually in error

proneness and coding time requirements and that this trend becomes more

sharply defined when the combination of error and coding time is taken into

account. This is both a validation of the metrics and a motivation to use

multiple resource terror and coding time data] variables in further validations"

(ibid:381).

They accomplished the measurement of combined errors and coding time by

separating their components (modules) into categories of higher and lower errors

and coding time. Those components that were high in both error count and

coding time were teimed "difficult," and those with low error counts and coding

time were termed "easy" components. With these categories, they explained their

higher correlations with "it is important to consider the combination of these

factors because ... a component with a high metric value may result in few

errors because a large amount of time was invested in the coding of this

component" (lbid:381).

These "difficult" components were then separated into categories by order

of difficulty. These categories were those components that were one or iaore

standard deviations above the mean for number of errors and coding time. An

outlier is a component more than onf* standard deviation above the mean, and

an ext~reme outlier is a component more than two above. The ten metrics were

used to determine how many outlier error components they could iderntify. Their

results Indicate that the metri. that best. Identified the outliers and extreme

outliers was the hybrid metric 1NFO-LOC. This led to their conclusion that

"this observation is <.lgrnifla'ant because it support s the. need to use metrics from

all classes, conlirms again that stlructure arid code nretrics aret measuring

dlffertrnt l)ropert ies of soft.Ware uolmiplonents" (ibid4:382). They also ,.uget.td the

41)



use of a "miniraunt r,,etric count of 4", which increasez; the number of outlier

error components that cin be identified (Obid:384).

rhis research supports the use of a hybrid metric. Some issues other

than the use of a byotid metric were introduced. Their outliers were for total

0 error and total coding time. Coding time has riot been presented within this

thesis as a factor within maintainability, but a careful consideration of

maintainability would support its use.

Harrison and Cook were developing a metric that would measure an entire

softtware system's complexity. They considered metrics in two categories,

rnaerolevel measures arid microlevel measures. The macrolevel measures consider

how the function of Pach module fits into the overall system. The micruevel

measures consider the detailed operation of a single module. They described a

new metric that would embrace both macrolevel and microlevel complexity

* (Harrison and Cook, !%87:213).

They called their new metric MMC, for Macro/Micro Complexity. This

metric includes both a macrolevel and a microlevel component. The macrolevel

m,ýasure uses the number of global and parameter variables that are used witnti

a module, much like INFO does. It also includes a calculation of "quality of the

subprogram's documentation" (ibibd:216), which Is simply a ratio of the number of

comments to the number of source lines within each module. The microlevel

measure they used was v(G). The sum of the microcoaplexity of each module

and the amount It contributes to the overall complexity through its use of data

is the MMC.

This hybrid measure was compared to six other metrics, using error data

from a 30,00)-line compiler project written in C. MMC had a higher correlation

* with the number of errors that. occurred wi thin each module! than any other

46

0

!"•' :r, •,,' nl '• • "l ,mII, =l,• * ,iI! I1 i ', *"i ,I • ! '1• 1 " -|p •,



metric (ibid:2 17). One of the oth.r metrics was v(G), Their results show that

* addirng a data flow component to v(G) will creal.,t a metric that can better detect

modules that will have the greatest number of errors. This also supports the

use of a hybrid metric to measure softwat> complexity.

SAamamurthy and Melton looked at Hansen's ordered pair of v(G) and

operaLr count and decided that a combination of Halstead's and McCabe's

metrics would make a good metric. They combined the two metrics into a single

* metric to prevent the problem that occurs when the two metrics give conflictirg

reports about the relative complexities of two modules. They weighted the

count of certain operators and operands by the level of nesting. Tbey defined

a value "C", which is one greater than the current structure's level of nesting.

They "call C the cyclomatic complexity of the control structure" (Ramamurth-Y

and Melton, 1986:310%. In addition to counting all of the operands and

* operators, they co'tnted those that were part of a control structure and added

the value of ,the nesting level to the count of that operator or operand. This

gave certain opeiators greater weight than others.

To test ,iese weighted metrics, they calculated the value of the

unweighted and the weighted metrics for Q, number of test programs. These test

programs were in three groups: programs with the same Software Science values

but different v(G), programs with the same v(G) but different Software Science

values, and a general collection of programs. Their results showed that "the

weighted metrics do detect the complexities which the software science metrics

detect and the complexities which the cyclomatic number detects" (ibld:313).

These results also support the use of a hybrid metric from two different classes

of metric.

Li and cheunp compared 31 metrics to see If generalizations could be

made about different classes of metrics. These metrics were calculated for 255

47

S



S tudelt, assignments in FORTRAN. No attempt, was made to compare any of the

metrics to any "external vaillatlon," such as a comparison of the metrics to the

numbers of errors or the amount of time required to code each assignment (LI

arid Cheung, 1987:707). This study was just to consider the general

relationships among the different metrics and determine the Internal consistency

among different measures within the samie metric (S,)t ware Science).

They considered the correlati(;ns :,,J. o. many different metrics, within the

0ame classes and between ciasses k K)ne of their co•iclusiorls was that a hybrid

metric would be very useful. They said:

In general, the control flow metrics fail to be comtprehensive and do
rnot consider the cuntribution of any factor 'xcept control flow
complexity. However, cihese metrics can differentiate between two
programs of similar VOLUME metrics and certainly are related to the
software quality. Hence, a useful approach Is to use VOLUME
metrics for prior classification and then to use CONTROL
ORGANIZATION measures to evaluate the programs in detail [Li ana
Cheung, 1987:7071.

In a different study, Kafura and Reddy came to the same c Aiclusion.

They stated their study "has also confirmed the results obtained in p~evious

werlk with respect to the distirnztioi, betwaen the code and structure metrics.

This distinction was evident in that the maintenance changes to components

might dramatically alter the values of metrics in one class of rnet,,ics without

changing materially the values of metrics in the other class" (Kafura and Reddy,

1987:342).

The results of these four studies suggest that the use of a hybrid metric

is a useful technique for measuring complexity. Appendix C, Empirical Support

for Hybrid Metrics, presents the data that three of these studies generated to

support their conclusions.

MEBOW. MEBOW was designed as a comprehensive control flow complexity

metric that did not have the deficiepcies of other popular metrics. No empiric4l

48



evidence or exampll[-.s were shown to support that this proposed mietric measured

complexity better thart the measures it, was supposed to supplant. Instead, this

metric was shown to nie:?t twelve "precisely-stated intuitive properties expec,,ed

of any control flow complexity metric (Jayaprakash and others, 1987:238).

These properties included such factors as language independency, ranking of

basic control ,,onstrt:cts, anid sensitivity to nestilng which were presented in the

previous chap .er as metric selection criteria. None of the other control flow

complexity rnetrics presented (v(G), KNOT, and SCOPE ratio) was able to satisfy

all twelve properties. Jayaprakash, Lakshmanan, and Sinha explained that these

properties werc important by stating "the idea is that if a control flow

complexity metric fails to satisfy these intuitive properties, any extent of

empirical evidence supporting its use in estimating the maintenance cost of

software, or predicting the number of errors in the program, etc., cannot really

provide enough conf.i.dence for its widespread use in practice" (.ibid:238).

They consider v(G) to be only a special case of MEBOW, where each

branch is counted as one, and a 'constanit bias" of 2 (for 2p) is added to

~I. calculate the value (ibid:240). KNOT is also considered as a special case of

MEBOW, where krcts are given a weight. of one, and all other control flow

factors are ignored. Because these two metrics are encompissed by MEBOW, they

* believe that MEBOW will better measure complexity than either metric could

alone. They state, "it appears, therefore, that by suitably assigning the

relative weights to the factors stated above, it is possible to arrive at a

complexity metric which combines the strengths of the existing measures"

(i bi d:240).

After using Jayaprakash, Lakshmnanan, and Sinha's arguments that MEBOW

is better than either v(G) or KNOT, soutte evidence of how well these two metrics

49



measure ,omplexity is glven for comparison-. Many studies have attempted to
iOmeasure how well v(G) measures c•.)nplexitýr. Some of the conclusions and

results oI these studies are presented, KNOT has not been studied in as much

det;iI, but some results for KNOT are shown.

EvLdence Supportin~g the Use of v(G). In a pair of experiments,

Curtis at tempted to measure the psychological complexity of software

mairitenance tasks by comparing Halstead's effort (E) and v(G) to the actual

performance of programmers on two software maintenance tasks. The

programnmer's performance was measured in two ways. The first was based on

the premise that a good measure of a programmer's understanding of a program

is his ability to learn its function and reproduce an equivalent program without

notes. This performance was measured by the "functional correctness of each

separately reconstructed statement" (Curtis, and others, 1980a:297). The second

performance criterion was measured by how correctly a requested change was

implemented and che time to perform the modification. Measurements of the

accuracy of implementation and time to completion were correlated between

modules and their E and v(G) values. The correlations were not high, but the

study's conclusions were "the two experiments comprising this study produced

empirical evidence that software complexity metrics were related to difficulty

prograrmmers experienced in understanding and modifying software" (ibid:301).

"These conclusions were questionable, as the correlations for v(G) ranged from

-. 55 to --. 21 in the first experiment, and from .38 to -. 36 in the second

experiment.

In a later experiment, Curtis found v(G) to be a better predictor of

programmer performance. This experiment measured how long each of 54

professional programmers took to find and correct a single error in three

separate FORTR"N programs. The correlations between 0(G) and the average

50



performan~ce were given to be .63 for single subroutines, and .65 for total

programs. These correlations were much stronger than in the previous

experiments. These results "demonstrated that far stronger results could be

obtained when the limitations in our earlier experimental procedures were

overcome. For instance, our previous research was conducted exclusively on

sinall-sized (35-55 lines of code) programs, which seems to have limitled those

results..." (Curtis and others, 1980b:307).

McCabe stated that a v(G) of ten is a reasonable upper limit for a single

procedure, and if complexity exceeds ten, the procedure should be decomposed

Into smaller procedures. Walsh studied software developed for the AEGIS Naval

Weapon System radar to determine If procedures with higher v(G) had a higher

number of errors. He quickly determined a cor'relation between those procedures

with a high v(G) and the occurrence of errors in those procedures. But he saw

that those were also the largest, procedures in terms of lines of code. To

determine if the number of decisions within a procedure had an impact, and that

v(G) was not just measuring size, Walsh separated those modules with v(G) of

ten or more and those with a lower v(G) to compare their relative error count.

He found that the procedures with v(G) of ten or more had 21 percent more

errors per 100 lines of code than those with a smaller v(G). Those procedures

0 with higher v(G) averaged 5.60 errors per 100 source statements, while the

others averaged 4.59 errors (Walsh, 1983:95). This suggests that v(G) Is

measuring something more than just the size of a procedure, and that it is

valuable In predicting the error rate for software. Walsh explained his numbers

by stating:

As the number of detected errors in a piece of software increases,
the probability of the existence of more undetected errors also

- Increases. Put simply, errors come in clusters. Thus, It can be
confidently predicted that when the procedures In the study enter

51

0



the maintenance phase of their existence, the procedures with a
complexity greater than or equal to ten will continue to experience
higher error rates than those procedures with complexity below ten

0 [Walsh, 1983:95--961.

Harrison and Cook's macrocomplexity and microcomplexity metrics were

described earlier. Their correlations for v(G) with error occurrence and other

* metrics are presented in Figure 15 within Appendix C. They also compared how

well each metric was able to identify the most error prone and least error prone

modules. The modules were listed from most errors discovered to least, and a

comparison was made to how well the metrics were able to rank order the

twenty modules. The correlation for how well v(G)'s ranking of all the modules

matched their actual error ranking was only .50, but a ranking of just the most

error prone six and least error prone six modules was .81. Both numbers were

the middle scores for the seven metrics measured. A conclusion that Harrison

and Cook drew from that data is "this suggests that the metrics work quite well

* in identifying the 'extraordinary cases,' but do a relatively poor job of

distinguishing among modules which do not fit into one of these 'extraordinary'

categories (i.e., either few errors or many)" (Harrison and Cook, 1987:218). If a

* software manager had this type of error prediction data from v(G), he could

spend more resources testing the more complex modules, reducing resources on

those modules that are determined to be less complex.

Shepperd studied v(G) and the results of other research and came to a

different conclusion about the metric than other researchers. He felt the metric

is based on "poor theoretical grounis and an inadequate model of software

development" (Shepperd, 19811:30). lie disputes the metric's empirical validation

results, also. He disagrees that an Intuitive appeal should be part of a metric's

validation and sneeringly discards intuition as a factor in the consideration of

* the metric. While it may be understood that a metric's Intuitive appeal should

52

-0



not be its only justificatiol for use, this factor should not be offhandedly

dismissed.

A list of theoretical objections was presented by Shepperd. One is that

"the treatment of case statements has also been subject to disagreement"

(ibid:j32), He discusses that different researchers have used different counting

sirategies tc number the decisions in a case statement. This is one reason that

a counting strategy should be rigorously defined and adhered to. Shepperd

--- points out that v(G) cannot measure the complexity of sequential statements.

This is certainly a valid criticism and is why others have added a size

complexity metric to v(G).

According to some researchers mentioned by Shepperd, "applying generally

accepted techniques to improve program structure" can actually increase v(G)

(ibid:32). This is because the metric is insensitive to the unstruct-uredness of a

program, as it only counts decisions and does not reflect if a decision causes

jumping out of loops or into another decision, which are generally considered to

be unstructured techniques. This is a reason why KNOT should be added to

v(G), so that less structured techniques will cause higher complexity values.

This is one of the justifications for MEBOW. As was mentioned in Chapter Two,

Shepperd believes that, v(G) does not measure inter-module complexity well.

Since this appears to be a correct appraisal, this criticism is one reason why

MEIIOW calculation is being suggested for intra-module use only.

Shepperd refers to some data that Evangelist reported showing "the

application of only 2 out of 26 of Kernighan and Plauger's rules of good

programming style invariably results In a decrease in cyclomatic complexity"

(ibid:32). This contradicts Myers' results comparing the v(G) of more ano less

structured code from Kernighai; and Plauger's The Elements of ProKramnkirng Style.

According to Myers' calculations, v(G) was always lower for what. was

53



subjectively considered the more structured code from their examples (Myers,

0 1977:64).

Shepperd reasoned that even though he did not agree with the theoretical

justifications for v(G), it would still be a useful metric if it can be shown to

accurately measure complexity. "The theoretical objections to th2 metric, that it

ignores other aspects of software such as data and functional complexity, are

not necessarily fatal. It is easy to construct certain pathological examples, but

this need not invalidate the metric if it is possible to demonstrate that in

practice it provides a useful engineering predictor of factors that are associated

with complexity" (ibid:33). He then proceeded to condemn other researchers'

experimental metnods, statistical correlation techniques, and results, ending with

a sweeping statement that "to summarize, many of the empirical validations of

McCabe's metric need to be interpreted with caution" (ibid:34). His points were

well made, but he did not refute all of the results he presented that suggest

that v(G) could determine error-prone modules. His contention that a problem

with this metric is that. it does not measure data flow complexity is a further

argument that v(G) should be combined with a data flow complexity metric such

as INFO.

Evidence S;.p_.qortinD the Use of KN(OT. Woodward, Hennel, and

•Hledley did not show any data that compared KNOT to any error data or the time

it took programmers m..i nodify a module. Instead, they showed examples of two

code fragments that pe'forried the same function and stated the source code

* with ihe smaller KNOT count. was more structured. These same examples showed

that v(G) did not change. While the source code with fewer knots was typically

shorter and had fewer branches than the example with more knots, one example

54



they showed had a lower KNOT count for uistructured code, while the structured

* version had a hiýher KNOT count (Holvatt, 1::881.

One oifferenco between KNOT count and v(G) is that the KNOT count does

riot measure the structure of the program's control flow. Instead, it measures

the structure of thi source code. This can be considered a benefit because a

progrcm's maintainer will work with tLe ,fource code and not a flow graph

(Hlowatt, 1988).

--* Consid&-rig that, a more structured version of a progri,.i is better- than a

less structured version, adding KNOT to v(G) seems to be a better way to

measure a program's struturedness than v(G) alone, in addition to deterrrining

how difficult it will be to test. Figure 10 shows a more structured version of

the code fragment from Figure 7 (in Chapter Two). These code ftagments Are

identical in function, but this fragment is more structured than the other. The

v(G) of both is three, but the second version has only three knots ana has no

backwards jumps. Discussing the benefits of KNOT, they state "we feel t.hat the

knot count provides a much clearer indication of program readability... The high

knot counts for these (two other] routines confirm not only the visual

impression of high complexity but aiso the difficulty actually encountered in

translating them to other languages" (Woodward and others, 1983:105).

0O In Li and Cheung's comparison with 17 other metrics, they assert v(G)

"correlates wel) with Halstead's, Gilb's, Knot Counts, SCOPE, EDGES, and NODES

metrics. So, the cyclomatic complexity metric seems to bridge the gap between

the two categories: VOLUME and CONTROL ORGANIZATION metrics" (Li arid Cheung,

1987:705). Their data shows v(G) correlations it the range of .971 to .796

with the 17 other metrics (ibid:704). Knot count has correlations In the

* range of .948 to .799 with the same metrics. These correlations suggest that

these two metrics measure complexity as well as any other established metrics.

55



* ICALL TPR
- - IF (ZR) 500, 500, 100

L__>IOO CALL TED
IF (Z3) 200 200 550

--- E7>2 0 0 ZG = ZG + 1
Zc = 0
CALL TCO

L____- GOTO 600
T )500 Z3 = 1

7550 CALL TEC
ZB = ZB + 1
ZC = ZC + 1

L - - >600 CALL TRA
RETURN
END

= KNOT

Figure 10. Mnre Structured Knot Example
(Voodward and others, 1983:104)

In this section, much conflicting data and data interpretations have been

presented. While t0e use of McCabe's cyclomatic complexity metric is now
i popular, the metric has soe obvious limitations. It appears that many of the

theoretical objections that Shepperd has agalmst v(G), such as it not being able

V. measure ý;tructuredness or data flow, would be remedied by adding KNOT

0 ccount with the use of MEBOW, and using INFO to measure data flow. A well-

defiona counting strateg'y will lessen the problem of researchers measuring the

same modules differently because they are not counting MEBOW in the same

0 fashion Overall, it appears that vkG) lays a gooo foundation for the

measurement of contrd! complexity, and MfEBOW improves upon this foundation.

In conclusion, "several variations [for measuringi the cy,,lomatic complexity

metric havw shown very encouiaging potential Lor usefulniss as measures of

software product quil,ty" (BasIll and Relier, 1980:287).

50



Information Flow. Information flow was described in Chapter Two, and an

example was given for INFO calculation. This section presents further evidence

that INFO reliably exhibits complexity, in the form of data flow complexity.

Basili and Perricone explain why this data complexity is an important factor to

measure when they state "interfaces appear to be the major problem, regardless

of the module type" when referring to where errors occur most often in a

program (Basili and Perricone, 1984:47).

One of the earliest experiments with INFO was done by Henry, Kafura, and

Harris (Henry and others, 1983:125). Values for INFO, v(G), and Halstead's E

were calculated for source code modules from the Unix operating system and

were then compared to a list of errors found during the system's development.

The three metrics were also compared against each other to see if they appeared

to measure the same factors. Their results are summarized in Figure 11. The

- formula used to calculate INFO is shown as (5) in Chapter Two.

SE v (G) INFO

Errors .89 .96 .95

E .8411 .3830

0 v(G) .3459

Figure 11. A Comparison of Three Metrics
(Henry and others, 1983:130)

These results suggest two conclusions. The first is that INFO Is a useful

measure of complexity, as a high correlation was found with detected errors.0

The second Is that INFO measure.s different factors than Halstead's E and v(G),

57

0_



0

as the correlations between INFO and the other two metrics were small. Henry

10 explained this result as "the information flow complexity measurement Is

orthogonal to the other two metrics since it has a low correlation to both

Halstead's and McCabe's metrics. The independence of the information flow

metric Is Explained by its greater concentration on the manner on which system

components are interconnected" (ibid:130).

Harrison and Cook's comparison of INFO (they called it HNK) with other

metrics and errors appear in Figure 1, in Appendix C. The correlation between

INFO and errors is not as high as F,3nry's results were, with a .62 correlation.

An obvious cause of this discrepancy) is that they did not have access to all of

the information normally used Lo calculate IFO. Instead, they used the

formula:

(fan-in + fan-out) " 2 ' lengt (11)

0 Apparently, summing the data factors instead of using their product weakened

"their influence in the metric ca'culation. Therefore, a greater correlation with

E and v(G) were encountered tha i bi fore, but a worse correlation with the ,,rror

count was the result.

INFO, like v(G), was used in an attempt to rank order ta'e most and least

error-prone modules used in Harrison and Cook's study. INFO had A .55

correlation with the rank',ng of all twenty modules used. This is slightly

greater than the .50 correlation received by v(G). Measuring Just the most

error-prone six module,3 and least error-prone six modules, INFO had a .77

_ correlation, which is somiwhat smaller than the v(G) result of .81 (Harrison and

Cook, 1987:218).

Recalling Kafura and Cailnin g's work with INFO, Figure 14 in Appendix C

0 shows that INFO was able to Identify extrerne outlier error components better

58

0



than any non-hybrid metric used. INFO also measured the number of resource

outliers better than any other metric except LOC. INFO correctly identified

38/"85 error and coding time outliers (Kafura and Canning, 1985:383).

Rodriguez and Tsai used four metrics to determine the complexity of two

medium--sized "system implementation packages" (Rodriguez and Tsai, 1986:369).

The ietrics used were INFO, LOC, v(G), and Halstead's volume metric, which Is

defined as (Conte and others, 1986:42):

V = N ' Aog92r (12)

Just as with the Harrison and Cook experiment, INFO was not calculated

as Henry, Kafura, and Harris suggest it should. Rodriguez and Tsai explain, "as

a result of our approach, the definition of fan-in and fan-out given by Henry

and Kafura has to be revised" (Rodriguez and Tsai, 1986&370). They show that

if global variables are modified within a local procedure, they are not counted

in the data flow of the overall procedure.

Using this iHenry and others') formula, no good correlations of the
metrics are found against modifications and errors. However, using
Halstead's ideas, an adaptation leads us to formulate the complexity
of a procedure as:

length ' In(fan.-in * fan-out)

Using this definition of complexity, the. correlations found are
improved considerably jlbid:3701.

These lour mut,,rtlb were compared to the number of modifications reported

for each module throughout the development and maintenance of the two

programs. These modifications were adaptive and perfective, rather than

corrective- in nature. Rather than calculating If each metric can identify the0

most-modified modules, the study showed how the metrics added together

_expiained the variation in the num ber of' modifications. Their results showed

that INFO explaixled 80.297% of the variation in modifications, while INFO with0

LOC could explain 84.994% of the variation. With all four metrics combined,

5 9

0



87.257% of the variation of modification could be explained. They concluded

"we have to keep in mind that. the high regression coefflcient (0.87257) shows

that meaningful relationships exist between each metric taken individually or

jointly and the Index of errors of modifications to the software" (lbid:371).

el Further analysis was performed to see if they could determine some

module size threshold that the four metrics would dot correlate well with errors

or modifications. Their final conclusions were "all four metrics are useful

indicators of the occurrence of errors or future modifications of software units,

when the unit size exceeds some threshold. For our study cases, that threshold

is 75 lines of code" (ibid:374).

Kitchenharn per'ormed a stjdy that compares v(G), LOC, and an INFO-like

metric called Information Linkage (IL) with tLe 226 modules of a communications

program. As INFO does, IL considers the number of data flows into and out of a

procedure. The numter of procedures that call the current procedure are added,

as is the number of procedures the current procedure calls. These factors are

added, instead of multiplied as INFO does. Kitchenham compares the three

metrics with the number of perfective changes and the number of correctli6

changes made to the communications system. The percentage of error-prone and

change-prone procedures that IL identified was lower than the percentages

identified by tte LOC and v(G) metrics. She suggests that these iesults Airectly

contradict Kafura and Canning's results, although t,iey calculated iNFO rmucl,

differently thar: she did (Kitchenh~m, 1988:374).

• Alth(ough these results do not support the use of INFO to the exLent that

other studies do, some Interesting conclusirns were given:

The results of this study suggest that it might be a cos,-effective
procedure to apply more stringent development p ,)cedures to
programs with high fan-out values. Ex*.ra time spent on 19% of the
programs would have been 63% efficient (since 63% of the programs

60



identified warranted additional development time), but would have
only been 24% effective (since only 24% of the programs which
warranted additional development time wouid have been identified).
Extra time spent on a randomly selected 13% of programs would
have been 33% efficieni, and 13% effective IKitchenham, 1988:3751.

Metric Implementation Considerations

* The previous section explained in some detail why hybrid metrics are

useful, and presented the results of studies that show how hybrid metrics can

measure complexity well Then MEBOW was dcscribed and evidence supporting

* the use of v(G) and KNOT was given. Finally, study results favoring INFO's use

was presented. This section explains some issues of metric implementation such

as countiag strategies, and determining threshold values.

* Calculation of Metric Value. Figure 12 shows a sample FORTRAN program

that reads three numbers and writes the greatest of the three numbers. Basic

blocks, which are the straight line segments of code, are numbered and

- separated by lines within the figure. A flowgraph of the program is presented

next to the program. Following Jayay •xash's terminology, blocks that have

only one source statement are represented in the flowgraph as horizontal lines,

*� and blocks that contain more than one statement are represented as circles.

The implicit branches are dotted lines, and explicit branches are solid lines.

According to the definition in Chapter Two, MEBOW is calculated by

counting branches and KNOTS and adding their respective weights. The raw

weights of the branch types are:

1. Implicit forward branch = 1
2. Implicit backward branch = 3

- 3. Explicit forward branch = 2
4. Explicit backward branch = 6

These values represent the MEBOW developer's contention that an ex0licit

branch is twice as harmful as an implicit branch, and a backwards branch Is

three times as harmful as a forward branch. According to the developers, "it, is

61

S

•- m , • , - " I • • l ' ! e: • ' t • •'1' : fl 'i I , i mi



important to note that the weights associated with each of these entities are

only relative to each other and their actual values are of no significance"

(lbid:240-241). They also stated that "it also seems meaningful to assign a

relatively high weight to each knot since it normally represents an

* unstructuredness in the program" (ibd:241). because each KNOT involves two

branches, the weight ,f the KNOT is calculated as the sum of the branches

weights. If two Implicit branches intersect, as in an IF...TIhEN...ELSE statement,

N it is not considered a KNOT by MEBOW,

To each branch is added its scupe weight. According to iyaprakash, this

"provides a means for recognizing branches with remote targets which when

suitably accounted for, can help the complexity metric satisfy properties rpiating

to nesting" (ibid_:239). This scope weight is the weight of the subparagraph

that is branched around. For a forward branch from block A to block B, the

scope is the subgraph from node A + I to node B - I. This represents the

nodes between A and B and the branches "whose both end points are within the

same set of nodes" (ibid:239). For a backwards branch from B to A, any

* branches that include the nodes A or B are also counted. An example from

Figure 12 with a forward branch is the branch from node 4 to node 10,

represented as (4,10). The scope of the branch encompasses the four branches

• (C,7), (6.8), (7,9), and (8.5', and the two KNOTS F(6,3), (7,9)] and 1(7,9), (8,5)1.

Therefore, the weight of (4,10) is equal to its raw weight plus the weight of Its

interior• branches and KNOTS.

Figure 12 shows a program with eleven blocks, thirteen branches, and ten

KNOTS. The MEBOW calculationi for Figure 12 is as follows:

62

0•



0

*

INTEGER A,B,C l1
READ 100, A,B,C 7

100 FORMAT (314) I
if (A .GT. B) 2

* GO TO 10
2 3

IF (B .GT. C)
3

GO TO 20 4

4
* 40 PRINt 200,C

200 FORMAT (I5M 5
GOTO 505_/

iO If (U .GT. C)

--* GO TO 30 I

GO TO 40
8

30 PRINT 200,A 1 8
GO TO 50

20 PRINT 200,B
10

50 STOP
END 10

11

11

_ • Figure 12. Example MEBOW Calculation
(Jayaprakash and others, 1987:239)

Branches:
(1,2) = 1 (implicit forwards branch)
(1,3) W 1 (implicit forwards branch)

(2,6) = 4 (explicit forwards branch = 2,
scope covers (3,4) and (3,5) = 2)

(3.4) = I (implicit forwards branch)
* (3,5) = 1 (implicit forwards branch)

63



0

(4,10) - 27 (explicit forwards branch = 2,
scope covers (6,7), (6,8), (1,9), (8,5) 12 and
KNOTS [(6,8), (7,9)] and [(7,9), (8,5)] = 13)

(5,11) = 9 (explicit forwards branch = 2,
scope covers (6,7), (6,8), (7,9) = 4 and
KNOT [(6,8), (7,9)] = 3)

(6,7) =1 (implicit forwards branch)
(6,8) 1 (implicit forwards branch)
(7,9) 2 (explicit forwards branch)
(8,5) 8 (explicit backwards branch 6,

scope covers (6,7) and (6,8) = 2)
(9,11) 2 (explicit forwards branch)
(10,11) 1 (implicit forwards branch)

Knots:

[(1,3), (2,6)] = 5
1(2,6), (4,10)] = 31
[(2,6), (5,11)] 13
[(2,6), (8,5)] = 12
[(3,5), (4,10)] = 28
[(4,10), (5,11)] = 36
[(4,10), •9,11)] = 29
[(5,11), (8,5)] = 17
[(6,8), (7,9)] = 3
[(7,9), (8,5)] = 10

0 MEBOW = 243

This example shows MEBOW calculation, but because the program has no

external interconnections, it has an INFO value of 0. An example for both

e MEBOW and INFO is shown in Appendix D, Calculation of Metric Value for Ada

Procedure.

Some issues that have not yet been addressed are how to count c')mpound

conditions and how to count a multiway branch or CASE statement. McCabe

suggests that each condition in a compound condition be counted separately

(McCabe, 1983:10). For example, the statement "IF Cl AND C2 THEN" would add

0 two to v(G) because it Is equivalent to "IF Cl THEN IF C2 THEN". Critics say

that this is not realistic because no matter how many conditions are considered,

only one of two branches will be followed. Following this logic, the calculation

0 of MEBOW disregards the number of conditions In a compound condition.

640-



The CASE statement was developed to simplify multiway branch statements

so that a series of nested IF... THEN.. ELSE structures would not have to be

created. Therefore, "it. is natural to expect that a good complexity metric

should assign a lower complexity value to a t-way CASE structure than its

equivalent nested IF...THEN...ELSE structure" (Jayaprakash and others, 1987:242).

For MEBOW, an N-way CASE statement's complexity is calculated as 2'N, instead

of the N"2 complexity that would otherwise be calculated by following the

IMEBOW branch counting rules.

The definition of INFO states that the "fan-in of procedure A is the

number of local flows into procedure A plus the number of data structures from

which procedure A retrieves information" and the "fan-out of procedure A is the

number of local flows from procedure A plus the number of data structures

which procedure A updates" (Henry and Kafura, 1981:513). An exact description

of what constitutes fan-in or fan-out is not given. For example, is an array

passed into a procedure counted as 1, or as I for each element in the array?

Is a record counted as 1, or as I for each field In the record that is modified

in the procedure? Following the counting examples given by Kitchenham, the

fan-in is considered "the number of data structures (not individual elements)

the program reads from" (Kitchenham, 1988:370). The fan-out Is calculated the

same way. Therefore, a pointer variable or array that Is input or output adds

just one to fan-in or fan-out.

In languages such as Ada, it is easy to determine which procedure

parameters are counted as input data flows, which are counted as output data

flows, and which are counted for both. These parameters are designated "in",

"out", and "in out" in the procedure declaration. This determination is more

difficult In a language such as Fo'TRAN. In FORTRAN, a parameter or global

variable Is considered an output data flow if It is used on the left side (left of

65



the assignment operator "') of an assignnunt statement, and it is considered

an input data flow if it is used anywhere else. If it is used for both purposes,

it is counted in both fan-in and fan-out.

To determine if a variable is global, the procedure must be parsed and

each token found compared to a list of the tokens for the language being used.

If the token is not a reserved word, it should be compared to the local symbol

table, which is a list of those variables declared within the procedure, or

compared to the procedure's parameter list. If the token is not in either of

these lists, then it should be assumed that the token 1s a global variable. This

definition may not be correct when using a language such as FORTRAN, which

allows the programmer to declare variables at any point in the procedure by the

use of implicit variable type declarations. Using this counting strategy, these

variables would be counted incorrectly as globals which will increase the INFO

value. This is incorrect, but any module that has such declarations should be

monitored closely anyway because this type of d~ciaration may be confusing to a

maintainer. In Ada, a loop parameter within a FOR loop also appears to have

0 this behavior, but this loop parameter can be easily found and added to the

local symbol table during parsing because of its relation within the FOR loop

parameter specification.

• There can also be some difficulty in determining if a parsed token is an

array or a function while counting globals. This is because in some languages

such as FORTRAN, both arrays and function calls delineate their indexes and

parameters with parenthesis. For example, the statement "RATE =

TAXRATE(EMPLOYEE)" could either use EMPL(Y)EE as an Index to the array

TAXRATE, or EMPLOYEE could be a parameter to the function TAXRATE. If

TAXRATE is not declared as a parameter or described in a COMMON block as an

66

0O



array, the statement is ambiguous. The only way to determine the semantics of

* this statement is to parse the entire program and determine where TAXRATE is

declared. Fortunately, this problem will not occur in most modern structured

languages.

Following the above reasoning, one must conclude that it is not possible

to make a detailed counting strategy to cover all cases. Instead, a separate

counting strategy is needed for each language. This is the only way to account

0 for the differences inherent in each language.

Threshold Value. According to Kearney, any complexity metric should

have the property of normativeness (Kearney and others, 1986:1047). This

means that the metric should provide an acceptable norm, or standard that

specifies an allowable degree of complexity. A suitable threshold can not be

determined within the scope of this research. A decision was made not to

0 create a tool to generate the metrics, instead algorithms to implement such a

tool are given in Appendix B, Algorithms for Metric Value Computation.

Threshold ranges can be calculated by creating test cases and using them

/0 with a program that calculates the metric values for programs. Taking examples

of two different programs that perform the same function from sources such as

the classic book The Elements of Programming Style by Kernighan and Plauger,

A researchers can compare the metric values to see how well they r'elate to the

subjective opinions of structuredness and complexity offered about the programs.

Another source of equivalent programs is software maintained for the Air Force

in the Air Logistics Centers (ALC's). Different versions of programs that have

been improved by the maintainers should be available, and the metric values

can be determined for these prograins and compared to the subjective judgments

of the maintainability of each program. This method for obtaining programs to

"establish a iseful thresnold Is preferred, as AFOTEC's task of determining

67

0iz m ' F 'I L i ,•t i • •: -i • i



prcgram maintainability is the primary purpose for this thesis effort. Using

these programs is preferred because they will typically be larger and more

complex than the academic examples, and a judgment has been made to the

program's maintainability, not just if it more or less complex than another

program,

Comparing the metric values to more arid less maintainable programs will

show more than a practical threshold value. This will also show if the two

* metrics should be weighted equally in the consideration of program

maintainability. If one metric consistently agrees with the decisions which

programs are more maintainable, ther, it can be weighed more than the other.

-• Another consideration for these weights is that the test cases might suggest a

change as a function of the program's characteristics. For example, programs

written in one language might require different weights to better reflect

* maintainability than those programs written in a different language. Evaluating

different classes of programs, such as avionics systems and database systems,

may warrant the use of different weights for the metrics, Also, extraneous code

* can be added to programs, and the differences in the metric values will show

the sensitivity of the indexes.

Validation of Metrics

* Given this proposed method to measure maintainability, a procedure to

determine how well the metrics actually measure maintainability must be

developed. This is a very important consideration; It is possible to create an

Intuitively appealing metric that does not measure what it was intended to

measure. AFOTEC is aware of the importance of validation, as is evidenced by

their efforts to validate their Vol. 3 process ([.ynn, 1985). An interesting

-*O discussion or validation is given in Conte:

68



It is far too easy to create an attractive, intuitive model without
providing data that shows that the model actually does explain the
software phenomenon of interest. Attempts to validate programming
models have Involved collecting data via software analyzers, report
forms, and interviews. Statistics have been employed to show
relationships among metrics and to try to produce functions of those
relationships for explanatory and predictive purposes" (Conte and
others, 1986:22-23].

* The validation technique suggested is for the maintaining organization to

track a pilot project's history using a survey instrument. This survey

instrument will record various system parameters that influence maintainability.

0' After a certain prescribed period of maintenance has occurred, the results of

surveys would be returned to AFOTEC and compared to the predicted

maintainability of each program. This period of maintenance should include the

* first or second maintenance block changes, because by then the maintainers will

have a good understanding of the system and which portions of the program are

the most difficult to understand and modify. At this time, they will have

enough knowledge about the software to make subjective judgments about the

maintainability of each module, and a reasonable database of changed modules

will be a.vailable.

*O Within this survey instrument a parameter of interest is the occurrence of

errors. "An accepted validation technique for complexity metrics is to show the

correlation of the metric to the occurrence of errors" (Henry and others,

* 1981:130). This is certainly a factor that drives maintenance and many

experiments described in this thesis have used the occurrence of errors to

reflect a program's complexity.

* Another factor that should be included is the time required to modify

each module, however a module may be defined. Kafura and Canning descrir ed

tbe-r use : u" metries to Identify outliers with respect to number of error, and

* the amount of coding time required. In addition to time, other factors :.tight be

69



considered. Otlher information that AFOTEC has collected in the past while

validating the Vol. 3 include: program size, software language, frequency of

software updates, percentage of code that changes with each update, subjective

ratings of maintainability from the :naintenance teams, and training time

required for both new programmers and more experienced programmers (Lynn,

1985). As the following passage explains, the proposed survey tool should

include all of this information, in addition to the error occurrences and the

modification times for each module.

While this extra information might not be used in a correlation with

metric values for the system, it may help to draw conclusions about the data

received. For example, if the metrics identify one system to be more easily

maintainable than a second systeri, yet the number of errors reported and the

amount of time required to make cnanges on the first system is greater than the

"second, several factors might be involved. If the first system iG maintained by

novice programmers, while the second system is maintained by experienced

programmers, the differences from the predicted maintainability can be explained

by the exjerience level. Conversely, if both maintenance teams are equivalent

but have differences for the error rates and time required to implement a

change, then a good case can be made that the metrics are riot measuring

maintainability and should be modified. This extra information can be used to

determine if external factors have unduly Influenced the ease of program

maintenance and should be taken Into account during the validation process.

This type of measurement is an effort to ei;force some engineering

discipline on the collection and interpreoiation of data AFOTEC's effort to

validate the Vol. 3 re'Jed upon estimation'; of these factors by the project

managers and senior maintenance personnel because either no ditailed project

data was sept by the maintenance stafi', or this data was not released to

70
_0?



AFOTEC. A decision to collect this data must be made by both AFOTEC and the

0 maintaining organization if a pilot study is to be made to validate these

metrics.

Figure 13 shows a flow diagram of what should happen during the

validation process. The left side of the diagram defines significant development

rmilestones from the earliest point that, AFOTEC is able to perform software

evaluations. These development milestones are not meant .o reflect the
0

software development phases as reiresented in MIL-STD--2167A, but to show the

major managerial changes as the program goes along.

The Operational 'rest and Evaluation phase occurs during the integration

and test phases of software development. Ths phase includes two different

blocks in the flow diagram. The first block depicts a baseline of the software

as it is first delivered to AFOTEC for evaluztion. The second block represents

future evaluations of the software d:",ing the development process, which might

take several years on a large system. These evaluations can be compared with

the baseline to determine if the software is being made more or less

maintainable because of the many changes made during the integration and test.

Currently, multiple maintainability evaluations are performed on software in

order to detect any problems so the developer can be directed to fix them.

The Program Management Responsibility Turnover (PMRT) represents the

final version of software delivered by the developer. After PMRT the

maintaining organization hias maintenance control of the software. This block

suggests a final post-development baseline to determine how maintainable the

system that was delivered is.

The System Mai ni enaince/o)perat lonal Support phase encompasses two blocks

w• thin the flow diagram. The first is data collection. Tiese d;At, reflect those

71

-0



i-I

Software Development
Milestones

Begin measuring
developing software

Operational Test
and Evaluation

Measure software
throughout test phase

Program Management
* Responsibility ) Measure delivered~

Turnover version

Gather data about
where errors occur and

* which modules have
taken The most time to
modify

System Maintenance/
*• Operational Support

Compare data to system
* measurements, correlate

and weigh metrics

Figure 13. Example Validation Method Milestones

72



factors expressed above, error count and time to modify, with other factors as

extra information. Once an acceptable amount of data is collected, a comparison

is made with the metric values associated with the modules, and their actual

error counts and modification times.

* Summary

This chapter is the culmination of the work described in the previous two

chapters. The use of hybrid metrics was introduced in Chapter Two, but little

documentation was given to support their use. MEBOW and INFO were explained

in some detail in Chapter Two, but the experiments that showed their

effectiveness were not described. Chapter Three demonstrated how to determine

if a metric measures maintainability and two metrics were exhibited as being

able to measure maintainability effectively if paired together.

This chapter provided a lengthy description of the usefulness of hybrid

metics, along with descriptions of experiments indicating the use of hybrid

metrics as a valuable mveasurement technique. Then supporting evidence was

given that MEBOW and INFO are both useful metrics and have been used to

measure complexity successfully. Metric calculation issues were discussed and

examples were given showing the application of the described countiaig

strategics.

While the use of hybrid metrics and the two metrics described have been

documented, it is understood that they have not been used together. Therefore,

important information about the metrics such as their sensitivity, useful

* threshold values, and if one metric better reflects maintainability for the types

of programs these will be used to measure, have not been determined. This is a

reason to emphasize the importance of metric validation.

0

73

_0



V. Conclusions and Recommendations

Introduction

This research has involved a survey of metrics, a definition of criteria to

determine which metrics measure maintainability, and an in-depth look at two

metrics which meet the most of these criteria. A determination will be made

now whether using these metrics will actually solve he problems that were

given in Chapter On(r to be resolved. This chapter explains what was

accomplished and how the problem was met. Then the limitations of the

solution will be elaborated. Finally, some recommendations for further research

are examined.

Conclusions

A framework for the automated evaluation of software maintainability was

developed. A set of criteria to determine which automatable complexity metrics

better reflect maintainability than others was defined. The metrics discussed

were compared with each criteria and the metrics that had the most complete

coverage in each of the three criteria groups was determined. A combination of

the two metrics MEBOW and INFO was determined to have the best coverage

overall of the criteria.

After these two metrics were selected for use, their implementation was

studied. Algorithms to calculate the two metrics were developed, although a

tool to generate the metrics was not created. A method to determine useful

threshold values for these metrics was explained. Sources for test cases to

determine these thresholds were given. A procedure to validate the use of

these metrics to measure maintainability was developed. This procedure

specified what data must be collected, and when it should be collected.

74



The following section examines two issues: how the given problem was

solved, and the limitations and benefits of automated metrics are presented (or

how metrics can be helpful once the limited information they yield is

understood).

How the Problem was Solved. The problem was to develop software

maintainability metrics to be incorporated into the AFOTEC Vol. 3. Constraints

on the metrics researched were that they had to fit into the scope of the seven

characteristics of maintainability explained in Chapter One. These metrics were

to measure aspects of maintainability that the Vol. 3 does not, and they must

be automatable. The following discussion presents each of these issues.

These metrics were to be incorporated into the Vol. 3, and applied within

the seven maintainability characteristics. This was only partially fulfilled.

When this research began, the metrics were to be incorporated into the Vol. 3 as

questions, with equal weight as the other questions. As more information about

metrics was acquired, though, a decision was made not to include these metrics

within the overview of the Vol. 3, but to use them in a separate maintainability

evaluation whose results could support the Vol. 3. Also, separate metrics to

reflect each of the seven maintainability characteristics were not discovered.

Simplicity is the only characteristic that is measured by the proposed metrics.

These metrics were to measure aspects of maintainability that the Vol. 3

does not. MEBOW reflects complexity issues such as the levels of nesting in

control structures, and the scope of branches. These are addressed within the

Vol. 3, but are not measured in the same way that MEBOW does. The Vol. 3

asks the evaluator for a subjective estimate of how complex is a module's

nesting, while MEBOW objectively calculates the complexity caused by nesting.

INFO reflects the complexity of the data connections between modules, while the

Vol. 3 subjectively measures the number of global variables used, and how well

75



the input and output parameters to a module are described. Therefore, MMEBOW

and INFO measure some different aspects of maintainability than the Vol. 3

does. These metrics can be automated and used to evaluate all of a program's

source code, instead of just a fraction of it.

Each aspect of the problem has been considered, and the constraints have

been met. This use of an automated tool that calculates MEBOW and INFO to

measure the maintainability of software is a solution for the problem given.

The aspect of this problem that was not sufficiently answered is the automated

use of metrics that measure qualities supporting the six characteristics other

than simplicity.

The Limitations and Benefits of Metrics. The metrics presented can be

used to reflect maintainability, if they are used correctly and their limitations

are understood. These metrics can be used to gather data, but the

interpretation of this data must be made with a clear understanding of what the

data mean. Rodriguez and Tsai state in their conclusion, "The final conjecture

states that the metrics shculd not be accepted as axioms. They give

information, but that information has to be interpreted in the context of the

particular system being measured" (Rodriguez and Tsai, 1986:368).

Metric analyses are useful only to compare "apples with apples", which is

a reason that a well-defined counting strategy is needed (Conte and others,

1986:27). Someone comparing two different sets of data should have confidence

that they were both counted in a consistent manner. These software metrics

require calibration from historical data gathered in a specific environment to

establish appropriate weights and threshold values (ibid). The suggested metrics

have been shown to reflect the complexity of modules written in procedural

languages, but no evidence supports their use with different paradigms. An

"76



application of MEBOW to modules written in languages such as LISP, PROLOG, or

Smalltalk might not be practical. Any comparison of measured values from

modules written in one of these languages and other modules written in a

procedural language such as Ada might not reflect their relative complexity.

While software metric results can assist the decision-making process of

software development and testing personnel, they cannot replace this process

(ibid). A module that rates below the threshold value may still be more

difficult to maintain than one that scores above the threshold, depending on

maintainability factors that are not measured by the proposed metrics. For

example, a well-commented module that is complex may be more easily

maintained than a less complex module that has no comments. This factor is

not reflected by the automated metrics. That is why the metrics should be used

in an advisory capacity, as Harrison and Cook suggest, "On the practical side,

our study suggests that software project managers can use software complexity

measures as a tool in identifying the few subprograms most likely to contain the

majority of errors, and hence can allocate their testing resources more

efficiently" (Harrison and Cook, 1987:214).

Along these same lines, how the software development managers use the

metrics should be limited. According to Conte, "software metrics and models are

intended to be used to manage products, not for evaluating the performance of

technical staff" (Conte and others, 1986:27-28). If the programmers understand

that their performance is being measured, they will quickly find ways to realize

improved metric results, even if this does not improve the maintainability of the

program.

Another limitation is that the difficulty and cost of computing metrics

may be high (ibid). This is a problem with the use of the Vol. 3 evaluation

77



technique. The automation of MEBOW and INFO should lessen the cost of

measuring these metrics.

Several benefits of using these automated metrics have been briefly

described. 0n, benefit is that modules that are most likely to contain errors

will be identified, and greater testing resources can be allocated to those

modules. Also, those modules that are too complicated are recognized, and they

can be further decomposed to less complex, more maintainable modules. Cote

expresses an interesting analogy for the use of metrics by asserting, "metrics

can greatly help in depicting the features and layouts embedded in thousands of.

lines of code, in much the same way that gauges and dials give a nuclear plant

operator an idea of what is going on inside a reactor" (C6te and others,

19? 8: 121).

These sections have shown that the automated calculation of MEBOW and

INFO will resolve the problems this research has attempted to solve. The

limitations inherent with the use of automated metrics have been described,

along with the benefits from their use. Metrics have an important application,

but should not be used out of their limited context.

Recommendations

The use of a hybrid control and data structure metric appears to answer

AFOTEC's needs. Before these metrics should be used, though, certain issues

must be considered. Recommendations to resolve these issues are explained.

The first recommendation is that a tool that measures both MEBOW and

INFO must be built. Although either metric value can be computed manually,

this process is difficult and time-consuming. This manual computation would

also violate one of the constraints given, that no extra work be given to the

78



evaluators. An implementation of these metrics in an automated tool is a

necessary first step for the use of these metrics.

Until some type of study has shown that this hybrid metric reliably

reflects maintairnability, its use should be considered advisory. A pilot study

following the validation method presented in Chapter Four will relate the meuric

values to maintainers' subjective ideas of which modules were more maintainable.

Once this study has been accomplished, a determination can be made if the

metrics actually reflect maintainability. If the study suggests they do reflect

maintainrability, the metrics' results cart be used in the same mariner as the Vol.

3 evaluation results. If the study suggests the metrics do riot measure

maintainability, perhaps some weighting of the metrics can be used that will

better reflect maintainability, or a different class of metric can be included.

While data for this study is being accumulated, these metrics can be compared

to the Vol. 3 results and other subjective measurements of maintainability.

The amount of data that will have to be collected by maintainers for this

pilot study may cause objections from the maintainers. They may iesent the

amount of time and effort required for a study that will not immediately support

their office. The importance of collecting this data must be emphasized to the

maintainers, as well as the positive impact to the evaluation of maintainability

of future software systems.

A recommendation for further study is for someone to complete the

validation pilot study. This is most likely an effort that AFOTEC will have to

provide for itself, as the data collection may take some time. Once this data

collection has been accomplished, following the guidelines presented in the

previous chapter, a comparison should be made with the metrics' maintainability

predictions and the collected maintainability data.

79



Another important area is to discover software metrics that reflect

characteristics other than just complexity, For example, Harrison and Cook

presented a measure of "documentation" that they use to reflect how self-

descriptive a module is (Harrison and Cook, 1987:215). This measure is just a

ratio of the number of comments to the number of total lines of the module.

But perhaps other descriptiveness metrics are available which cannot be so

easily thwarted. Possibly some metric that reflects how modular the software is

can be developed. These types of metrics could be used along with the

complexity metrics already suggested and would broaden the metric coverage to

determine software maintainability.

Summary

The use of metrics to measure software's complexity and maintainability

shows much promise, even if the initial fascination with some metrics such as

Halstead's Software Science and McCabe's cyclomatic complexity has worn off.

This is well described by the conclusions of Kafura and Canning:

Eveni if software metrics had no other use their proven ability to
identify the most error-prone components would be of tangible

* value to software developers. This tangible value is particularly
evident if the struclture metrics can be used to Identify the most
error prone components since this would permit the system to be
redesigned so as to avoid components of this type altogether.
Fu',rthermore, information on error-prone componeots would allow tAie
testing or code review processes to be concentra' a on these
,omponents IKafura and Canning, 1985:3811.

:0

0

80

S



Appendix A: Justification for Metric Complexity Criteria Ratinjs

In Chapter Three, Figure 9 shows a matrix of metrics vs. the metric

selection criteria developed in that chapter. Within the matrix, marks are

shown that indicate if the metric meets the metric selection criteria, and the

level of agreement if it does so. This appendix explains the reasoning behind

the agreement indications. The metrics are listed in the same order as they

are shown in Figure 9, and remarks are given for each criteria.

LOC

Clear and Unambiguous: As the example in Figure 1 shows, LOC calculation is
ambiguous without a definite counting strategy.

Intuitive: A longer program is likely to be more difficult to maintain than a
0O shorter one.

Language Independent: Each language needs a different counting strategy.

Prescriptive: If a module is significantly longer than others in the same
program, it is a candidate for further decomposition. This does not give any
indication how the module should be broken up, though.

Robustness: Making a program shorter by breaking it up into modules should
lessen its complexity. Thi.s will be reflected by the metric. But as a
counter-example, if all the comments are taken out of the module, it will be
shorter, but more complex.

Accurately Reflect Control Flow: NA

Ranking Basic Control Structures: NA

Nesting and Compound Conditions: NA

Accurately Reflect Data Flow: NA

Indicates Data Amount: NA

Shows Data "We: NA

Reflects Inter-Module Data Links: NA

N

* Clear and Unambiguous: Chapter Two explains that some tokens can 'e both
operators and operands, which complicates the metric calculation.

81

-0



Intuitive: As programs are composed of operands and operators, a program with
more operators and operands is likely to be more difficult to understand than

* one with fewer operators and operands.

Language Independent: In languages such as LISP, the difference between
operators and operands is not clear.

Prescriptive: A module that has a larger ,.umber of operators and operands
* should be decomposed into shorter moiules, but this gives no suggestion how to

accomplish the decomposition.

Robustness: If a module is changed, operators will either be added or
deleted. This will reflect that a change occurred.

-- Accurately Reflect Control Flow: NA

Ranking Basic Control Structures: NA

Nesting and Compound Conditions: NA

O Accurately Reflect Data Flow: NA

Indicates Data Amouit: While the total number of operands might be considered
a reflection of the amount of data used in a program, N includes both
operators and operands and does not show just the data.

* Shows Data Use: NA

Reflects Inter-Module Data Links, NA

Clear and Unambiguous: The number of lines between two variable references is
not difficult to count.

Intuitive: The fewer the number of lines between variable references, the
more likely a maintainer will be able to understand a ?ariable's usage.

Language Independent: This czn be used with any language that has variables
and lines between them.

Prescriptive: If a variable has a large span, it is possible that the module
is too large and should 'e decomposed.0
Robustness: A change in the number of lines between two references will be
reflected, as well as any added variable reierencet will change th,! span for
that variable.

Accurately Reflect Coutrol flow: NA0
Ranking Basic Control Structures: NA

82

0



Nesting and Compound Conditions: NA

Accurately Reflect Data Flow: NA

Indicates Data Amount: NA

Shows Data Use: This reflects how data is used within a module to the extent
that it shows locality of variable references.

Reflects Inter-Module Datd Links: NA

INFO

- Clear and Unambiguous: The definition presented by Henry (Henry and Kafura,
1981) is straightforward. Others have not been able to calculate these
values. For example, Harrison and Cook did not use (fan-in * fan-out) ^2 in
their calculations (Harrison and Cook, 1987). This does not suggest that the
INFO calculation is ambiguous, instead, it reflects their inability to
separate their data into fan-in and fan-out. This is not a problem in the

-- interpretation of a counting strategy, such as LOC.

Intuitive: The greater the number of connections to other modules, the
greater the possible impact of any change and the higher the complexity.

Language Independent: Any language that can be broken into modules can have
* the data links measured.

Prescriptive: Henry and Kafura used INFO to show which modules in the Unix
kernel were data "choke-points" (henry and Kafura, 1981:517). This gives an
indication of the effect that modifying a module will have on the other
modules in a system.

Robustness: If a change to the nuaber of data items referenced or modified is
made, this will reflect the change. This will not reflect a change to >ow th&
data is used, or any change in the module control flow.

Accurately Reflect Control Flow: NA

Ranking Dasic Control Structures: NA

qesting and Compound Conditions: NA

Accurately Reflect Data Vjow: This will reflect the inter-module data flow,
* but not the intra-module data flow.

Indicates Data Amount: This reflects the parameter and global data flows into
and out of a module.

Shows Data Use: This shows the amount of data.. but net its use, in a module.

83

0°



Reflects Inter-Module Data Links: This reflects the parameter and global data
flows into and out of a module.

oV

Clear and Unambiguous: Different counting strategies have been introduced for
control structures such as case statements.

Intuitive: The greater the number of branches in a module, the more difficult
it will be to understand.

Language Independent: This operates on a directed graph representation of a
program, so it is independent.

Prescriptive: This tells when a program has become too complex. By viewing
the control flow graph, a determination can be made how sections of code can
be separated into a different module without adversely affecting the structure
of the original module.

Robustness: A change in a control structure may cr may not be reflected. A
0 rearrangement of a module that contaius the , number of braný:hes will not

have a different v(G) value. Any change to sequential statements will not be
reflected, nor will any change to the data flows.

Accurately Reflect Control Flow: This does represent the control flow of a
module.

Ranking Basic Control Structures: A series of sequential statements is
presented as less complex than a branch. An IF...THEN... ELSE branch is shown
as more complex than an IF.. .THEN branch. An iteration construct is more
complex than a sequential statement.
Nesting and Compound Conditions'. Arqu ants weie given in Chapter Two saying

that this does not reflect nesting or compound conditions.

Accurately Reflect Data Flow: NA

Indicates Data Amount: NA

Shows Data Use: NA

Reflects later-Module Data Links: NA

0 Knot

Clear and Unambiguous: A crossing of control paths is easily understandable.
If the language in use allows multiple statements on one line, though, some
difficulty in determining if a knot occurs may arise.

* Intuitive: If structured programminif is considered to be a useful paradigm,
then any reflection of unstructuredness will show added complexity.

84

0



Language Independent: The problem of calculating the knot count with a
* language that allows multiple statements on a line arises.

Prescriptive: According to Woodward, (Woodward and others, 1983) if a module
with knots is rewritten to have fewer knots, it will be less complex. The
problem is how to rearrange the code to have fewer knots.

Robustness: A change in a module's control structure will be reflected. But
any change to sequential code or data flow will not be reflected.

Accurately Reflect Control Flow: This does not represent the program's
underlying control flow, instead, it reflects the unstructuredness of the
source code text.

Ranking Basic Control Structures: No ranking is given.

Nesting and Compound Conditions: This does reflect nesting and any branches
out of nested control structures.

Accurately Reflect Data Flow: NA

Indicates bata Amount: NA

Shows Data Use: NA

Reflects Inter-Module Data Links: NA

MEBOW

Clear and Unambiguous: This is slightly more complex to understand than
either v(G) or Knot, but is precisely defined.

Intuitive: The more complex the control structures are in a module, the more
complex the module is.

Language Independent: This operates on a directed graph represen'tation of a
program.

Prescriptive: This tells when a program has become too complex. By viewing
the control flow graph, a determination can be made how sections of code cka
be separated into a different module without adversely affectir- the structure
of the original module..

- Robustness: To a greater extent than either v(G) or Knot, this will ieflect
any changes in a module's control flow. But this has their same limitation
that it does nct reflect data flow or the amount of sequential code.

Accurately Reflect Control Flow: This reflects the control flow as well as
v(G), and shows unstructuredness ar well as Knot.

85

0



Ranking Basic Control Structures: This reflects the ordering: sequential
statements < condition statements < iteration statements.

* Nesting and Compound Conditions: This reflects nesting because of the scope
component in each branch's value.

Accurately Reflect Data Flow: NA

Indicates Data Amount: NA

Shows Data Use: NA

Reflects Inter-Module Data Links: NA

Clear and Unambiguous: This has the same counting ambiguities as N.

Intuitive: Studying the total and unique operators and operands is
understandable. The weighting factors in the E value lessen its easy
understanding.

Language Independent: This has the same problem as N.

Prescriptive: A higher value will suggest that the program needs to be
decomposed, but does not give any guidelines how to implement this

* decomposition.

Robustness: Changing the number of operators or operands will make a
difference in the metric value, especially if the operator or operand has not
been used yet in the module.

* Accurately Reflect Control Flow: NA

Ranking Basic Control Structures: NA

Nesting and Compound Conditions: NA

* Accurately Reflect Data Flow: NA

Indicates Data Amount: NA

Shows Data Use: NA

_* Reflects Inter-Module Data Links: NA

V 1G.......

Clear and Unambiguous: The calculation of v(G) was explained ab.2ve. Counting
* the number of unique operatols may he difficult, as the N section reflect..

86



Intuitive: Adding operators to the branches should show more about the
modules's complexity than either will separately.

Language Independent: While v(G) is language independent, the operator count

is not.

Prescriptive: This comes from the description of v(G) prescriptiveness.

Robustness: A change in either the number of branches or the number of unique
operators will be reflected by the metric. Any change in data will not be
reflected.

Accurately Reflect Control Flow: This will reflect control flow as well as
v(G).

Ranking Basic Control Structures: This ranks structures as well as v(G).

Nesting and Compound Conditions: This has v(G) 's limitations in reflecting
nesting.

Accurately Reflect Data Flow: NA

Indicates Data &mount: NA

Shows Data Use: NA

Reflects Inter-Module Data Links: NA

C

Clear and Unambiguous: This -: a vecy complex metric to calculate.

* Intuitive: Using both a data strvcture metric with a controi flow metric
gains the benefits explained for a hybrid metric.

Language Independent: This Joes n t reflect any particular language, as long
as a piocedural language is used.

* Prescriptive: A high data flu• or control flow compc.rnent will sUggest that
the module needs to be decomposed, but doesn't explain num to best decompose
the module.

Robustness: Any change of "locally exposed" data referencýes will be
reflected, and changes ,ri the control flow will be reflected.

Accurately Reflect Control Flow. This reflects the iumbpi of branches in a
module.

Ranking Basic Control Structures: This ranks sequential statements as less
complex than conditions-

-7



Nesting and Compound Conditions: This reflects nesting, and reflects the use
of data within nested statements.

"- Accurately Reflect Data Flow: This shows the use of data aid the amount of
data that are "locally exposed".

Indicates Data Amount: The data flow factor reflects the number of variables
used.

*O Shows Data Use: The use of data within a module is reflected within each node
of the module.

Reflects Inter-M lule Data Links: This is an intra-module metric.

0

0

eo

0o

0

0o

•O



Appendix B. Al0gor:ithms for M.etric Value Comp~utation

This s•etiou explains algorithms f,>r calculating the metric values for

both MEBOW and INFO. The INFO calculations are g-iven first, then the MEBOW

algorithms are explained. Each section will have ai. explanation, followed by

a pseudocode representation of the algorithm.

Inforration Flow Calculation, This calculation requires a list of the

reserved words for the languaqe the module under evaluation is written in.

This algorithm assumes that a parser is available that can return tokens for

the language being used, along with a list of parameters from the module

calling statement. The algorithm goes through the module, looking for valid

identifiers, and compares each identifier to this list of reserved words. If

the identifier is in the list, ix is discarded and the next identifier is

evaluated. When the module's parameter declarations are evaluated, any

identifier used as an input variable is added to the input list and any

identifier used as an output variable is added to the output list. Any

variables declared locally are placed in the reserved word list so they will

not be counted as input or output data flows.

if the identifier is not in the list, depending on how the identifier is

used, it is compar:ed to either a list of input identitiers o- a lis. of output

identifiers. If the identifier is on the left side of an assignment, it is

compared to the output identifiers, If it is used in any other expression, it

is compared to the list of input identifiers. If the identifier is not in the

appropriate list, it is .dded to t, at. list. This operation continues until

the end of the mod,'u k is reacjhed.

0"



.l'ths i-ection adds the module's paramfeters to the input and output

iden'tifier lists.

REPEAT

IF the identifier is an input parameter
THEN

* ADD the identitier to the list of input identifiers

ELSE

ADD the identifier to the list of output identifiers

Oe ENDIF

UNTIL no more parameters are found

This section adds the module's locally declared variables to the list

S-.. of reserved words so they will not be counted for the INFO value

REPEAT

IF a valid jariable declaration is found
THEN

ADD the identifier to the list of reserved words

ENDIF

UNTIL the beginning of the program body is foind

This section looks for identifiers within Zne body of the module and
adds these identifiers to the input and output identifier lists.

R(EPEAT

INPUT an identifier
COMPARE the identifier to a list of reserved words
IF the identifier is not in 'his list.

THEN

* IF the identifier is on the left si de' of an assignmrýmet
1TI EN

COMfARY the identifier to a list of output identifiers
IF the -ident if cer is not in th,ý s list

'T H EN

AP1D the ide,, tififer t.: the .ist of output identifiers

.'



ENDIF

* ELSE (the identifier is not: being assigned a value)

COMPARE the identifier to a li[t of ipput identifiers
IF the identifier is riot in this list

THEN

. ADD the identifier to the list of input identifiers

ENDIF

ENDIF

* ENDIF

UNTIL the elnd of module ?.s reached

CALCLLATE INFO as (the number of input identifiers *
the number of output identifiers) 2

MEBOW Calculation. Each statement within the module that is either a

branch or .he target of a branch is kept track of by its line number. A list

-* of branch/target r,airs is kept, along with a determination of the type of

branch. The types of branches are implicit or explicit, and backwards or

forvards, each having a different value for MEBOW calculations. Once all of

.g the branch/target pairs have been determined for the module, each branch's

value is calculated.

Each branch is assigned the weight of its type. For example, if a

* branch from line 1.3 to line 17 is implicit, the branch (13,17) is assLgned 1,

or the explicit branch (15,8) is assigned 6. Then, the scope of each branch

is calculated. A list of branches that are within the scope of each branch is

"* determined, along with any knots within that scope. If a branch has no other

branches or kiots withui its scope, it is flagged as completed. This list

that contains the branches and knots withirn the scope of a branch xs a 1lst of

Sthose va.luies the branch depends on, or ilVs dependen.cy ),ist.

• 1.



The value for each branch is calculated as the sum of its weight and the

* sum of the values for the branches and knots in its dependency list. If each

of these branches and knots has its completed flag set, then the current

branch's value can be calculated and its completed flag set. If any of these

* branches or knots is not completed, the current branch is bypassed for later

calculation. This is an iterative process, which continues through the list

of branches until all dependencies have been completed. The sum of all the

* branch's values is the returned MEBOW value.

A case statement will be treated somewhat differently. A list of the

line numbers for its selections will be kept, along with their number. The

* calculation of its value is 2 * the number of selections, added to the value

of each selection. These values are calculated the same as any other

statements, and dependency lists are kept for case statements, also. once

* each selection's dependencies have beeii evaluated, the case statement's value

can be calculated.

This creates the list of branches

REPEAT

IF the statement is a branch
TTHEN

*O ADD the line number to the list of branches, along with a
determination of what type of branch it is

ELSE

IF' the statement is the target of a branch
* TIHEN

ADD the line number to its corresponding branch, to
creatt- a (TO, FROM) representation

ENDI F

ENb iF•

@9



UNTIL the last statement is input

-- This generates the list of dependencies for each branch and determines
-- if any knots have occurred. Any knots are kept in a separate li-t,

and their dependencies are also generated.

REPEAT

COMPARE the line numbers for a branch to each other branch
IF overlap of line numbers exists

THEN

IF the criterion for a knot exists

* THEN

ADD the knot to the list of knots

ENDIF

*I ADD the dependency to the current branch
SET the completion flag to false

ELSE

SET the completion flag to true

ENDIF

UNTIL all branches and knots have had their dependencies evaluated

• -- This goes through the lists of branches and knots and determines
-- which have enough information available to calculate their value.

If they depend on the value of a branch or knot that is not yet
-- known, then pass to the next branch or knot and try to calculate
-- its value.

* REPEAT

IF the completion flag of a branch or knot is false
THEN

CHECK the completion flags for each branch and knot in its
-- dependency list

IF all of the completion flags are true
THEN

ADD the values fcr each branch and knot in che•- depef:deric y list

* SET the completloTo flag to true

ENDIF

SŽ



END If

UNTIL all completion flags are set

-- The MEBOW value is the sum of the values 2or the branches ahd the knots

*l REPEAT

ADD the value of the current branch or knot to the SUM

UNTIL all branches and knots have been added

-- The MEBOW value is now known.

-0

0 9



Appendix C: Empirical Support. for Hybrid Metrics

Empirical Evidence.

In Chapter Four, descriptions of fotur studies that use hybrid me"rics

were given. The data and results that came from tese studies are presen ed

.iere in more detail. This section shows the data for three of the four

studies.

Kafura and Canning's Stud•. Kafura and Canning's research identified 32

components that were extrEmne outliers, or the most error-prone components,

from within the 170 components they studied. They analyzed these 32

compor ents with their ten metrics. They found that 28/32 extreme outliers

0
were identified by at least one of the ten metrics (Kafura and Canning,

19o5:382). The best result that any single metric had was 20/32. This metric

was the INFO-LOC hybrid measure. Figure 14 shows a matrix of the metrics a..id

the extreme outlier components they identified.

Thi; analysis was also performed on all the outliers, not just the

extreme outliers. The number of components in this category totaled 85.

INFO-LOC identified 42/35 outliers. This the best result of any metric used.

This metric also identified the second fewest number of non-outliers as

outliers. All of *he metrics incorrectly identified some components as

outliers, but INFO-LOC's percentage of correctly identified outliers to total

outliers presented was 42/63, which is only beaten by LOC's yield rf 41/59.

While othei metrics ideutified fewer nc.n-outliers as outliers, they also did
---0

u.t.recoJ .ize as riiany of the correct ou tliets.

Havrison ard Cook's Study• Harrison arid Cook's resultli showtd that

their hybr id me-rtit. wa.; ablie to ident t y tnt- most error pronef, moIdul es better

Sthi a•y ot>',el ' u .rt r c Tht, results iv Figcurc .1v show that 1N(' as a

u•



Software 1 2 345 6 78 9 1 11 11 11 1 1.222 22 22 22 2 33 3 MetricI
Metric0 1 2 3 4 5 6 7 8 9 0 1ý 2 3 4 5 6 7 8 9 0 1 2 Total

Lox X XX X X X XXX X XX X XX X XX 18

C~YCLOX X X X X X X X 10

Iw~o X X X X X XX X X XXX X XX X XX X 19
1NVIE X X X XX X X X X XX X X X X XX 1.7

REIWXX X X X X X X 8
STAB=I'I X X X XX X XX X X X X 12

*INK-LOC X X X X XX XX X X XXX X X X X XX X 20
REV-LOC X X X X X X X X X XX X1.
'qTA-LLX X X X X X X X XX X X X 1

Compo~nent Totals 8 10 4 55 4 7 5 1 44 7 4 60 0 27 5 45 2 0 886 1 0 43 23

Figure 14. Identification of Extreme Outlier Error Components
CKafura and Canning, 1.985:382)

metric BUGS MMC ?~NP lINK DStL VG E PRC

MMC .82 -- .90 .77 .67 .91 .80 .79
HNP .75 .90 --- .84 .70 .95 .87 .92
HNK .62 .77 .84 -- .77 .89 .98 .91
DSL .76 .67 .70 .77 -- 1 .77 .81 -7
VG .73 -91 .95 .89 .77 .93 .92
E .69 . 89( 87 .98 . S1 .93 -
PFC .64 .79 .92 .91 .70 .9? .93

*Pearson Product Moment coeff Icient s Af cnrrelýation for each otj the met~rics vs.
the xutrmt er of er rnrs and the other meturics . MMC: the: new. met ri1c, HNP H i
and Prei ser's Metric; lINK: Henry and Kaf ur a's hot~ rio; 'LDe vrdSur:

ýwe;VG : McCabe's mettic; E: Ho~lstea3 ~s Ft tort ; num, r of pi o .. ;

Fiqui t' . esult's of Hia~rlsofl and !ok t -Idy



hybrid of different types of metrics outperforms its component parts. They

wrote, "as can be seen, the ".C metric performed significantly better than any

of the other metrics examined" (Harrison and Cook, 1987:217). The MMC metric

had a .82 correlation with the number of errors found in the modules tested.

This metric was "based loosely" on the Hall and Preiser Combined Network

Complex-ty metric and Henry and Kafura's INFO, with a microcomplexity metric

of v(G) (ibid:215-2i6).

R-a...ur!t...Y and Yelton's Study. Ramamurthy and Melton did not perform a

statistical analysis of the quality of their weighted metrics. Instead, they

showed co:parisons of the unweighted and weighted Software Science and v(G)

metrics against 2" pairs of test programs and program segments. In three

tables, each pair is shown with the first program as the more complex of the

two. Nc >ustification how the first program was identified as more complex

was given.

Their first table showed six programs with the same Software Science

values but different v(G). Their weighted metrics identified the first

program of the test pair as more complex in all cases. Their second table

showed eight programs with the same v(G) but different Software Science

values. In all cases, tie weighted effort showed the first program in the

test pair as more complex. In one case, the weighted length and volume

measures incorrectly identified the less complex program, although the

weighted effort for the same program was correct. Their third table showed

ten programs with different Software Science and v(G) values. The weighted

length and volume metrics correctly identified all ten programs. The weighted

effort metric incorrectly identified one program. Overall, the weighted

metrics correctly identified 23/24 programs as being more complex than the

less complex of the test pair. The Software Science metrics correctly

97



identified 16/24, and v(G) correctly identified 15/24. This suggests that a

hybrid measure identifies complexity better than a sinqle metric can

(Ramamurthy and Melton, 1986:312).

30



Appendix D: Calculation of Metric Value for an Ada Procedure

This appendix shows the calculation of both metrics for an Ada procedure.

This procedure was taken from a program that calculates v(G) for Ada programs,

and is in the public domain. First the MEBOW calculation is presented, then a

list of the input and output variables will be given with a calculation of

Information flow.

Th,,, MEBOW calculation for this procedure will not be presented in the

same format as Figure 12. The flow graph for this example Is complicated and

will riot add to the comprehensibility of the example. Instead, Figure 16 shows

MEBOW values for five basic control structures. These structures are labeled in

the example. Their MEBOW values, which are their basic values added to their

scope, are presented after the example.

The first line of a control structure branch used in the MEBOW calculation

is labeled with a designator for reference during the MEBOW value calculation.

This designation is "C" for a case statement, "I" for an If statement, and "W"

for a while loop. These designators are numbered sequentially, so "13" refers to

the third occurrence of an if statement.

Figure 16 shows the MEBOW values for the if statements and while

statements used, but does not refer to the case statements. Each case

statement's MEBOW value Is twice the number of branches, which are its

enclosed "when" statements. To this value the scope of each enclosed branch is

added, to give the MEBOW value for the branch. For example, the case

statement C4 has three branches, and encloses CS, C6, and 15 within its scope.

Therefore, Its value is (2 * 3) + C5 + C6 + I5 = 29.

99



051

(a) Sequence
KEBOW 0 99/ 51

ci; ' ~si
IF <ci)> IF (cP )

THEN s2; \ 52 THEN s2

s3 ELSE s3;

s 3

(b) Selection (c) Selection

IF.. .THEN IF.. .THEN... ELSE

MEBOWJ - 3 KEBOW - 4

Si; 9 ci)D S,
REPEAT 'WHILE <cl DO

s2 IS2;

UNTIL <(l>; s3 S2
s3 

52

6S3 bS3

(d.) Repetition (4) Repetition

REPEAT...UK(TIL WHILE <cl'

MEBOW - 5 MEBOW - 7

Figure 16. MEBOW Basic Control Constructs
(Jayaprakash and others, 1987:240)

100



procedure Scan Nume, ic Literal; -- Scans numbers

-- Requires

This subprogram requires an opened source file, and the
- Universal Arithmetic package to handle conversions.

Effects

-- This subprogram scans the rest of the numeric literal arid converts
it to internal universal number format.

S--I Modifies

CST

procedure ScanNumericLiteral is

Overview

-- Note the following LRM Sections:
- - LRM Section 2.4 - Numeric Literals
-- LRM Section 2.4.1 - Decimal Literals
-- LRM Section 2.4.1 -Notes

-- ~ LRM Section 2.4.2 - Based Literals
- - LRM Section 2.10 - Allowed Replacements of Characters

-- Declarations for ScanNumeric Literal

Based Literal Delimiter : charavter,
.. holds value ot first based _literal. delieter:
.. ASCII.COLON (':') or kSCII.SHARP ('#');
- so the second one can be checked to be identical.

BaseBeing__Used : GC.ParserInteger:
base value to be passed to ScanBased Literal.

0

begin

CST. gram _symi va I PT.Numei rcTokenVal ut,

_Stru g , krkgth I,0;
a]su used by slib scannit.rs called from this subprogras-

].01



S~ - - Scarl i•st- f eic i

,Seal Integer;

Now, scan res of lit raI dependent on what Next char: is
C 1 case Neyt..Chnar is

have adecaliteral
when ' '':

11I if (LookAhel ad(1) ') then
..next token is a range double deiimiter

-- finished with numeric iiteral.
SeenRadix Point false; have an integer, literal

already set up for next scanner,
no call to Get Next Char.

SelseSeen RadixPoint := true;
Add_Next Char ToSour ceRep;
Get .Nex t_Char;

C2 case Next Char is
when Digit =>

* QScan Integer;
-- check and flag multiple radix points

1.I while (NextChar = ' .') and, then
(LookAhead(l) in digit) loop

LEN. Out put_.Message
Current , Line

* , Current_Column
LEM.TooManyRadixPoints)'

Add Next Char 1To Source Rep;
Get Next -Char;
ScanInteger;

end loop:
i * when ASCXl.UNDERLINE =-

. flag illegal leading under line
LEM. Out putt. essage(

Cur ent Line
Curre(t Column

, L .eadingUnderline)
--* n ,t e er

..nt flagging an integer consistig of a
... sig underline as a t;aA.ing radix
.. o-int casae. Check and flag multiple radix

W2 whi. 1e NeX t Car I) ard the n
* (LT,.•A AheaJ1) in digit) loop

LEM. Outut F, essage(
Cur rent LIA.ne

curs eni ( .Coiuma
I.,E . <"Eany _ .Radix._ Pointr )

A id _Nex t _C %o4ý, ..T,. o: u r _ Pe p
G t t N .. C

S ar .IT te g r ;
en- 2



when others :
flag trailing radix point as an error

* LEM.OutputMessage
Current Line

Current _Column
LEM.DigitNeededAfterRadix_.Point);

end case;

ScanExponent; check for and process exponent

end if;

h--have a basedliteral
when ASCII.SHARF .

ASCII.COLON => -- :
12 if (NextChar = ASCII.COLON) and (LookAhead(l) = '=) then

next token is an a.signment compound delimiter
-- finished with numeric literal.
Seen Radix-Point := false; -- have an integer literal
-- already set up for next scanner, no call to

* 
else-- Get Next Char.

Based Literal_Dell:Liter := Next-Char;
BaseBeingUsed := GC.ParserInteger'VALUE

(Work_String(l..WorkString Length));
13 if (Base_Being Used not in Valid Base Range) then

flag illegal bases as errors
LEad.Out putHessage(

CurrentLine
Current _Column
WorkString(l..WorkStringLength)
LEM.BaseOut Of Leqal RangeUse_16);

Base_Being Used := 16;
we use the maximum )ase to pass all the
extendvd_digits as legal.

end if;

Add_N~tI ._Char -To Source Rep; --- save the base delimiter
Get _Ne t Char;

C3 case Next Char is
when 'A' 'F' ; 'a" .. 'f' ' Digit =

Scan _BasedInteger (Base Being. U;ed)
when ASCIi .UNDERLINE

flag illegal leading under line-• 6 ~LMOutputMes:•sgc

SCtrrlt i.Line

nor, , lgs Y1 St Of i sninglc)
Wuider "inv as a trailing radix ppoint case

I [ 0 3



.flag leading radix point as an error
LE11. Output _Message(

* Current ILine
SCurrent Column

LEM.Digit NeededBeforeRadix Point);
when ASCII.SHARP

ASCII.COLON => --

flag missing field as an error
* LEM.Output _Message(

Cut rent Line
Current Column
LEM.No_hiteger In Based Number)

basedliteral _delimiter mismatch handled in
_ .next case statement.

when others =)
flag missing field as an error

LEM.Output -1essage(
Current Line

Current _Column
- , LEM.No_Integer In BasedNumber),

end case;

C4 case Next Char is
when ' . ' = >

Seea Radix Point := true; -- have a real_..literal
* Add__Next Char _ToSourceRep;

Get Next Char;
C5 caost Next C!_ar is

when 'A' .. 'F' a 'f' Digit >
Scan Based Integer (Base Being Used)

check and flag multiple radix points
W3 while (NextChar = ' ') and then

(Mook A. .. ad(1) in digit) or
(Look _ head(l' in 'It' . 'F') or
Soo, __Ahead (1) in a f 1f ) Ioop

1.E X Out put aMe (

SCu~~ eal Colk unoh

Add Next Chai TG Sorce __,p
'Get 4ýN•,xt Char;

* r I loopd
SW oh ASCIT.JUN ,li ,•.h L.. ..

flag iIlegal lealiuoi und*cr 1 1 k,,,d
I.FM. 0ut Put

S( 1 en t -COL u
---- •-,, C f j 1 r• t ... u o ] ,i m It

St . .u . .

_._---.•a~~~~~ ~~~~~~ 4(1 [l g:ig a% .r•• •• ',• ft Ig O



-.... radix point case.
Scan BasedInteger (Base Being Used)

*• when others =)
Sflag trailing radix point as an error
LEI.Output Message(

CurrentLine
Current Column
LE1i.Digit._NeededAfterRadix Point);

* Qend case;

CL case Next Char is
4hen ASCI"I.SHARP #

ASCII.CCLON =. :

* Add_ Next _CharToSource Rejp;
. save the base delimiter

14 if (NextChar /= BasedLiteralDelimiter)
then

-- flag based literal delimiter
S.... mismatch as an error

LEM.Output Message(
Current Line

Current Column
"Opene- , 1

& Based Literal _Delimiter
S& " Closer: " & Next _Char,

LEM.Based Literal _DelimiterMismatch);
end if;

Get Next Char; -- after base delimiter
-... check for and process exponent

*, scan Exponent;

whea others
flag missing second
based literal delimiter as an error

LEM.Out put Message
* orrrentLine

Curr ent Col]umn,
LY•i.Mi÷sing_.SecondBased LiteralDelimiter);

end c(",I S;-

wlhith ASCIISYHARP --

*ID ASCTII.C'OLON .. ..

SSeen Rad ,• Point : false;
- sav e t.w base delimiter

A:ý _ N >:!I- J ar ToSource Rep;

' ' if N < ( hi /ý Based _Literal _)elimiter) then
- flag based literal delimiter mismatch ecr

SIE p O utput Message(

S105



0

Current _Line
Current Column

"" , "Opener: " & BasedLiteralDelimiter
& " Closer: " & Next Char
LEM.Based Literal Delimiter Mismatch);

end if;

GetNextChar; -- get character after base
*O -- delimiter

Scan Exponent; checL for and process exponent

when others =>
--- assume an integerliteral
SeenRadixPoint := false;

* -- flag missing second
-- basedliteral delimiter as an error
LEM.OutputMessage(

Current Line
CurrentColumn
LEM.MissingSecondBasedLiteralDelimiter);

* end case;

end if;

---we have an integer literal
when others =>

* Seen_RadixPoint false; have an integerliteral
ScanExponent; .. check for and process exponent

end case;

-- one last error check
16 if (Next Char in UpperCaseLetter) or

* (NextChar in LowerCaseLetter) then
flag missing space between numeric literal and

-- identifier (including RW) as an error.
LEM.Output Message

Current Line
Current Column

JO , LEM.SpaceMust_SeparateNumAndlds):
end if;

--- now store the source representation of the token found.
Set. CSTSource_Rep(WorkString(l..WorkString Length));

* end ScanNumeric_Li teral;

This exal•lp,, hias six case stateelnicts, six if s Iateiie i s, and firoe, while

* stat emnonts. Eac'h statermenit Is cahculated avs its balsic value plus its scoiw. No

kil.ts cXiýýI ini this exanple to be counted,

106



Branches:

C1 = (2 * 3) + I1 4 12 = 76
C2 n (2 * 3) + Wi + W2 = 20
C3 = (2 * 5) = 10
C4 = (2 * 3) + C5 + '6 + 15 = 29
C5 (2 * 3) + W3 = 13
C6 = (2 * 2) + 14 = 7

Ii = 4 + C2 = 24
12 = 4 + C3 + C4 + 13 = 46
13 = 3
14 = 3

15 = 3

Hi = 7W1 7

W3 = 7

MEBOW = 258

It is interesting to note that this MEBOW value is only slightly larger

than the value for the much shorter example gliren In Figure 12. The reason is

that this example shows well--structured code. This code has no explicit

backwards branches, and no knots exist. This procedure's execution will always

proceed from the top to the bottom, except for the implicit backwards branches

because of the while statements.

The information flow calculation for this procedure is quite simple. All of

the variables used other than the three locally-declared variables are global.

If these variables are on the left side of an assignment, they are counted for

fan-out. It they are used in any other location, the,', are counted for fan -- in.

One variable, "Work _String Lenigth," is used for totni and is counted as both

fan,--out and fan-in.

Variables counted for fan-out:

CSTgram_sym_val
Work String. ,Length
Seen 1'adix Point

1]07



Variables counted for tan-in:

* PT.NumericTokenValue;
Next-_Char
Loo k-Ahead
Digit
Current-Line
Curr ent-Columni
LEM.TooManyRadix_Points
LEM.Leading _Underline
LEM.Digit _Needed_After_RadixPoint
GC.ParserInteger 'VALUE

WorkString
WorkStringLength

* Valid_BaseRange
LEM.Base_Cut _Of _LegalRange ýUse_.16
LEM.Leading Underline
LEM.Digit _Needed_Before_Radix_Point
LEM.No _Integer In_Based_Number
LEM.BasedLiteral_Delimiter M.ýismatch

* LEM.MissingSecond_Based_Literal_Delimiter
UpperCaswLetter
LowerCaseLetter
LEM.Space_Must_Separate Nun_Arid_Ids

INFO is defined in equation 4 as (fan-in fant-out) "2. The number of

variables counted for fank-in is 22. The number of' variaohxs counted for fan-

out. is three.

INFO = (22 '3) - 2 =4356

10



Bibliography

Basili, Victor R. and Barry T. Perricone. "Software Errors and Complexity: An
Empirical Investigation," Communications of the A 27:1: 42-52
(January 1984).

BasiLJ, Victor R. "Data Collection. Validation, and Analysis," Tutorial on Models
and Metrics for Software Management and Engineering, edited by Victor R.
Basili. New York: IEEE Computer Society Press, 1980.

Basil. Victor P. and Robert W. Reiter, Jr. "Evaluating Automatable Measures of
Suftwar, Development," Tutorial on Models and Metrics for Software

:4a1n~t:)',rnelit and Enineering, edited by Victor R. Basili. New York: IEEE
('umpiuer Society Press, 1980.

Bohmt, F A'. and others. "Quantitative Evaluation of Software Quality,"' Tutorial
on Models arid Metrics for Software Management and Engineering edited by
Victor R. Basili. New York: IEEE Computer Society Press, 1980.

Cont(i. S l, arid others. Software Engineerin_ Metrics and Models. Menlo Park
CAý The Benjamin/Cummings Publishing Company, Inc. 1986.

Cute,. "k. anid others, "Software Metrics: An Overview of Recent Results," The
Jmurnal of Systems and Software, 8: 121-131 (1988).

Curtis. hill and others, "Measuring the Psychological Complexity of Software
MaintenancP Tasks with the Halstead and McCabe Metrics," Tutorial on
Modi-ls arid Metrics for Software Management and Engineering, edited by
Victor R. Basili. Silver Spring MD: IEEE Computer Society Press, 1980.

Curtis, Bill and others, "Third Time Charm: Stronger Prediction of Programmer
l',!rforman,- by Software Complexity Metrics," Tutorial on Models and
Metrics for Software Manapgement and Engineering, edited by Victor R.
Hasili. Silver Spring MD: IEEE Computer Society Press, 1980.

Departrme-nt of the Air Force. Software Maintainabilitv - Evaluation Guide.
AFOTEC Pamphlet 800-2. Vol. 3. Albuquerque: HQ AFOTEC, 28 January
198h.

lHamer, Peter G. and Gillian D. Frewin, "M. H. Halstead's Software Science - A
Critical Examination." Proceedinf.s 6th International Conference on
Software Engineering. 197-205. New York: IEEE Computer Society Press,
IY81.

Hansen, Wilfred J., "Measurement of Program Complexity by the Pair (Cyclomatic
Number. Operator Count)." ACM SIGPLAN Notices, 13:3: 29-33 (March
1978).

Harrison, Warren and Curtis Cook. "A Micro/Macro Measure of Software
Complexity," The Jcurnal of Systems and Software, 7:3: 213-219
(September 1987).

109



Harrison, Warren and others, "Applying Software Complexity Metrics to Program
Maintenance," IEEE Computer, 15:9: 65--79 (September 1982).

Henry, Sallie and Dennis Kafura, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering, SE-7:5:
510-518 (September 1981).

Henry, Sallie and others, "On the Relationships Among Three Software Metrics,"
Structured Testing, edited by Thomas J. McCabe. Silver Spring MD: IEEE
Computer Society Press, 1983.

Howatt, Major James W., Professor, School of Engineering. Personal
Correspondence. Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, 4 Nov 1988.

Howalt, Major James W., Professor, School of Engineering. Personal
Correspondence. Air Force Institute of Technology (AU), Wright-Patterson
AFB Uli, 17 July 1988.

Jayaprak-ash, S. and others, "MEBOW: A Comprehensive Measure ol Control Flow
Complexity," Proceedings of the IEEE Computer Software and Applications
Conference. 238-244. New York: IEEE Press, 1987.

Kafura, Dennis and James Canning, "A Validation of Software Metrics Using Many
Metrics and Two Resources," Proceedings 8th International Conference on
Software Engineering. 378-385. New York: IEEE Computer Society Press,
1985.

Kafura, Dennis and Geereddy R. Reddy, "The Use of Software Complexity Metrics
in Software Maintenance," IEEE Transactions on Software Engineering,
SE-13:3: 335-343 (March 1987).

Kearrney, Joseph K. and others, "Software Complexity Measurement,"
Communications of the ACM, 29:11: 1044-1050 (November 1986).

Kitchenham. Barbara A., "An Evaluation of Software Structure Metrics,"
Proceed in_• of the IEEE Computer Software and Applications Conference:
369-376. Washington, D.C.: Computer Society Press of the IEEE, 1988.

Levitin. Anany V.. "How to Measure Software Size, and How Not To," Proceedings
of the IEEE Computer Software and Applications Conference. 314-318.
New York: IEEE Press, 1986.

Li, H. F., and W. K. Cheung, "An Empirical Study of Software Metrics," IEEE
Transactions on Software Engineering, SE-13:6: 697-708 (June 1987).

Lynn, Capt. Bernie. "Verification Study Results on the Software Maintainability
Questionnaire (AFOTECP 800-2, Volume 3) and Evaluation Threshold (3.3)."
HQ AFOTEC/LGS. Kirtland AFB, NM, 17 April 1985.

McCabe, Thomas J. "A Complexity Measure," Structured Testing, edited by
Thomas J. McCabe. Silver Spring MD: IEEE Computer Society Press, !.983.

110



Myers, Glenford J., "An Extension to the Cyclomatic Measure of Program
Complexity," ACM SIGPLAN Notices, 12:10: 61-64 (October 1977).

(viedo, Enrique I., "Control Flow, Data Flow and Program Complexity,"
Proceedings of the IEEE Computer Software and Applications Conference:
146-152. New York: IEEE Press, 1980.

Page-Jones, Meilir. The Practical Guide to Structured Systems Design. New
York: Yourdon Press, 1980.

Peercy, David E., "A Software Maintainability Evaluation Methodology," IEEE
Transactions on Software Engineering SE-7:4: 343-351 (July 1981).

Prather, Roriald E., "An Axiomatic Theory of Software Complexity Measure," The
Computer Journal 27:4: 340-347 (1984).

Ramamurthy, Bina and Austin Melton, "A Synthesis of Software Science Metrics
arid the Cyclomatic Number," Proceedings of the IEEE Computer Software
arid Applications Conference. 308-313. New York: IEEE Press, 1986.

Rodriguez, Volney, and Wei-Tek Tsai, "Software Metrics Interpretation Through
Experimentation," Proceedings of' the IEEE Computer Software and
A.%Lplications Conference: 368-374. New York: IEEE Press, 1986.

Schrioi,:-wirid, Norman F., "The State of Software Maintenance," IEEE Transactions
on Software Engineering, SE-13:3:303-310 (March 1987).

Sheri, Vincent Y, and others. "Software Science Revisited: A Critical Analysis of
the Theory and Its Empirical Support,", IEEE Transactions on Software
En__gjneerin_ SE-9:2- 155-165 (March 1983).

Sheppeýrd. Marti:n. "A Critique of Cyclomatic Complexity as a Software Metric,"
Software Enineering Journal: 30-36 (March 1988).

Walsh. Thomas J. "A Software Reliability Study Using a Complexity Measure."
Structured Testing, edited by Thomas J. McCabe. Silver Spring MD: IEEE
Computer Society Press, 1933.

Woodward, Martin R., "A Measure of Control Flow Complexity in Program Text,"
Structured Testing, edited by Thomas J. McCabe. Silver Spring MD: IEEE
Computer Society Press, 1983.

111



VITA

Captain Stephen K. Johnson was born on 22 April 1962. His birth was

recorded in Corvallis, Oregon, although he rarely admits that in public. After

moving to California as a child, he graduated from Soquel High School in 1980,

and accepted an appointment to the United States Air Force Academy. He

received a Bachelor of Science degree in Computer Science and a regular

commIssIon into the Air Force.

Captain Johnson's first assignment was with the Strategic Air Command at

Edwards AFB. California. in support of the B-lB Combined Test Force. He was

responsiblo for measuring the maintainability of the B-lB's Defensive Avionics

System's software and developed an appreciation for AFOTEC's maintainability

evaluation guidelines. Captain Johnson entered the School of Engineering at the

Air Force Institute of Technology in June 1987.

Permanent address: None

112



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

I a. REPORT SECURITY •CLASSIFiCATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE disr o n unlimited

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

IFPTT/!GCS/FNG /pD-O1 _
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Sc~honl of Prn-m'ing a__T __ _F__/

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Cod-)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

KirtMM•pnd 817 MA A7117-7I001
11. TITLE (include Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)

Stephen K. Johnson, B.S., Capt, USAF
13a. TYPE OF REPORT 1F3b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis I FROM TO _ 1988 December I 122
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

12 05 Maintainability, Measurement
Computer Programming

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: MODIFYING AFOTEC'S SOFTWARE MAINTAINABILITY EVALUATION GUIDELINES

Thesis Chairman: James W. Howatt, Major, USAF
Assistant Professor of Electrical and Computer Engineering

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

C3 UNCLASSIFIED/UNLIMITED EQ SAME AS RPT. 0 DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Jame* W, owatt. 1 2o -6.91 1AFTT!EtIQ
DDForm1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



UN LAS SI FIED

IThe purpose of this study was to survey automatable software
maintainability metrics for inclusion in the Air Force Operational Test and
Evaluation Center's (AFOTEC'S) software maintainability evaluations. This
research was looking for metrics that would measure maintainwbility, could be
automated, and would fit into existing guidelines. First, a set of software
complexity metrics was investigated. Then, a set of criteria to determine if
a complexity metric measures maintainability w! developed. After comparing
the metrics to the criteria, a subset of two metrics that met the criteria
better than any other metrics was derived

The software complexity metrics evaluatea were placed into three
categories: size metrics, structure metrics, and hybrid metrics. The
structure n.trics include both data structure and control structure metrics.
The hycrid metrics include metrics blended from two of the other groups,
such as a combination of size and structure metrics.

The metric selection criteria included three categories: general
applicability criteria, control flow complexity criteria, and data flow
complexity criteria. An assumption was made that the metric or combination
of metrics that met the most of these criteria would best reflect software
maintainability. A combination of a data structure metric, information flow,
and a control structure metric, MEasurement Based on Weights (MEBOW), was
determined to meet more criteria than any other metric or combination of
metrics. This hybrid metric was suggested for AFOTEC use.

Further information explaining theoretical and empirical justification
for the use of these metrics was given. A description of techniques to
determine metric threshold values was discussed, along with a procedure for
metric validation. Finally, a theme of the limitations inherent in measuring
maintainability with automatic metrics was elaborated.

i2TF T


